=@

¥ ¥ ¥

4D Language Reference

Introduction
Language definition
Debugging

; 4D Environment

: 4D Write Pro

; Arrays

. Backup

; BLOB

; Boolean

% Cache Management
. Communications

; Compiler

i Data Entry

; Database Methods
. Date and Time

&% Design Object Access
, Drag and Drop

: Entry Control

; Form Events

, Forms

» Formulas

: Graphs

&% Hierarchical Lists

; HTTP Client

. Import and Export
% Interruptions

; JSON

;. Language

; LDAP

. List Box

» Math

» Menus

» Messages

» Named Selections

; Objects (Forms)

. Objects (Language)
» On a Series

% Operators

& Pasteboard

; PHP

; Pictures

; Printing

.. Process (Communications)
.. Process (User Interface)
., Processes

. Queries

» Quick Report

. Record Locking

;. Records

; Relations

: Resources

w Secured Protocol

% Selection

w Sets

% Spell Checker

% SQL

& String

&% Structure Access

% Styled Text

@ Subrecords

w SVG

% System Documents
% System Environment
% Table

&% Tools

% Transactions

w Triggers

% User Forms

#% User Interface

% Users and Groups

w Variables

% Web Area

% Web Server

% Web Services (Client)
% Web Services (Server)
% Windows

& XML

% XML DOM

% XML SAX

List of constant themes
Error Codes
Character Codes
What's new

Obsolete commands
71 Alphabetical list of commands

B

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/What-s-new.901-3035671.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Alphabetical-list-of-commands.902-3035671.en.html

» Introduction

Copyrights and Legal notices
7= Preface

%= Introduction

7 Building a 4D Application

Copyrights and Legal notices

4D for Windows® and 0OS X®
Copyright© 1985 - 2016 4D SAS.
All Rights Reserved.

The software described in this manual is governed by the grant of license provided in this package. The software and the
manual are copyrighted and may not be reproduced in whole or in part except for the personal licensee’s use and solely in
accordance with the contractual terms. This includes copying the electronic media, archiving, or using the software in any
manner other than that provided for in the Software license Agreement.

4D, 4D Write, 4D View, 4D Server and the 4D logos are registered trademarks of 4D SAS.

Windows, Windows Server, Windows 7, 8, Windows 10 and Microsoft are registered trademarks of Microsoft Corporation.
Apple, Macintosh, iMac, Mac OS, OS X and QuickTime are trademarks or registered trademarks of Apple Computer Inc.
Mac2Win Software Copyright © 1990-2016 is a product of Altura Software, Inc.

ICU Copyright © 1995-2016 International Business Machines Corporation and others. All rights reserved.

ACROBAT © Copyright 1987-2016, Secret Commercial Adobe Systems Inc. All rights reserved. ACROBAT is a registered
trademark of Adobe Systems Inc.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

4D includes cryptographic software written by Eric Young (eay@cryptsoft.com). 4D includes software written by Tim Hudson
(tjh@cryptsoft.com).

Cordial Spellchecker © Copyright SYNAPSE Développement, Toulouse, France, 1994-2016.
All other referenced trade names are trademarks, registered trademarks, or copyrights of their respective holders.

IMPORTANT LICENSE INFORMATION
Use of this software is subject to its license agreement included with the software. Please read the License Agreement
carefully before using the software.

Preface

4D has its own programming language. This built-in language, consisting of more than 1000 commands, makes 4D a
powerful development tool for database applications on desktop computers. You can use the 4D language for many different
tasks—from performing simple calculations to creating complex custom user interfaces. For example, you can:

e Programmatically access any of the record management editors (order by, query, and so on),
e Create and print complex reports and labels with the information from the database,

e Communicate with other devices,

e Manage documents,

e Import and export data between 4D databases and other applications,

e Incorporate procedures written in other languages into the 4D programming language.

The flexibility and power of the 4D programming language make it the ideal tool for all levels of users and developers to
accomplish a complete range of information management tasks. Novice users can quickly perform calculations. Experienced
users without programming experience can customize their databases. Experienced developers can use this powerful
programming language to add sophisticated features and capabilities to their databases, including file transfer and
communications. Developers with programming experience in other languages can add their own commands to the 4D
language.

The 4D programming language is expanded when any of the 4D modules are added to the application. Each module includes
language commands that are specific to the capabilities they provide.

About the Manuals

The manuals described here provide a guide to the features of both 4D and 4D Server. The only exception is the
4D Server Reference, which describes features exclusive to 4D Server.

e The Language Reference is a guide to using the 4D language. Use this manual to learn how to customize your database
by incorporating 4D commands and functions.

e The Design Reference provides detailed descriptions of the editors and tools available in this environment.

e The Self-training manual leads you through example lessons in which you create and use a 4D database. These
examples provide hands-on experience and help you become familiar with the concepts and features of 4D and
4D Server.

e The 4D Server Reference, which is included only in the 4D Server package, is a guide to managing multi-user databases
with 4D Server.

About this Manual

This manual describes the 4D language. It assumes that you are familiar with terms such as table, field, and form. Before
you read this manual, you should:

e Use the Self-training manual to work through the database example.

e Begin creating your own databases, referring to the Design Reference manual when necessary.

e Increase your knowledge by studying that numerous demo and example databases that are available on the 4D Web
site (http://www.4d.com).

Writing conventions

In this manual, several writing conventions are used:

e Following the example of the 4D Method editor, commands are written in all caps using special characters, e.g.: CLOSE
DOCUMENT. Functions (commands that return a value) start with a capital letter and continue in lower case, e.g.:
Change string.

e In the command syntax, the { } characters (braces) indicate optional parameters. For example, SET DEFAULT
CENTURY (century{; pivotYear}) means that the pivotYear parameter may be omitted when calling the command.

¢ In the command syntax, the | character indicates an alternative. For example, Table (tableNum | aPtr) indicates that
the function accepts either a table number or a pointer as parameter.

e In certain examples in this documentation, a line of code may be continued onto the following line(s) due to lack of
space. However, you should type these examples as a single line of code without using carriage returns.

Where to go from here?

If you are reading this manual for the first time, read the Introduction section.

Introduction

This topic introduces you to the 4D programming language. The following topics are discussed:

e What the language is and what it can do for you,
e How you will use methods,
e How to develop an application with 4D.

These topics are covered here in general terms; they are covered in greater detail in other sections.
What is a Language?

The 4D language is not very different from the spoken language we use every day. It is a form of communication used to
express ideas, inform, and instruct. Like a spoken language, 4D has its own vocabulary, grammar, and syntax; you use it to
tell 4D how to manage your database and data.

You do not need to know everything in the language in order to work effectively with 4D. In order to speak, you do not need
to know the entire English language; in fact, you can have a small vocabulary and still be quite eloquent. The 4D language is
much the same—you only need to know a small part of the language to become productive, and you can learn the rest as
the need arises.

Why Use a Language?

At first it may seem that there is little need for a programming language in 4D. In the Design environment, 4D provides
flexible tools that require no programming to perform a wide variety of data management tasks. Fundamental tasks, such as
data entry, queries, sorting, and reporting are handled with ease. In fact, many extra capabilities are available, such as data
validation, data entry aids, graphing, and label generation.

Then why do we need a 4D language? Here are some of its uses:

e Automate repetitive tasks: These tasks include data modification, generation of complex reports, and unattended
completion of long series of operations.

e Control the user interface: You can manage windows and menus, and control forms and interface objects.

e Perform sophisticated data management: These tasks include transaction processing, complex data validation, multi-
user management, sets, and named selection operations.

e Control the computer: You can control serial port communications, document management, and error management.

e Create applications: You can create easy-to-use, customized databases that run in the Application environment.

e Add functionality to the built-in 4D Web Services: Create dynamic HTML pages in addition to those automatically
translated from forms by 4D.

The language lets you take complete control over the design and operation of your database. 4D provides powerful “generic”
editors, but the language lets you customize your database to whatever degree you require.

Taking Control of Your Data

The 4D language lets you take complete control of your data in a powerful and elegant manner. The language is easy
enough for a beginner, and sophisticated enough for an experienced application developer. It provides smooth transitions
from built-in database functions to a completely customized database.

The commands in the 4D language provide access to the standard record management editors. For example, when you use
the QUERY command, you are presented with the Query Editor (which can be accessed in the Design mode using the Query
command in the Records menu. You can tell the QUERY command to search for explicitly described data. For example,
QUERY ([People],;[People]Last Name="Smith") will find all the people named Smith in your database.

The 4D language is very powerful—one command often replaces hundreds or even thousands of lines of code written in
traditional computer languages. Surprisingly enough, with this power comes simplicity—commands have plain English
names. For example, to perform a query, you use the QUERY command; to add a new record, you use the ADD RECORD
command.

The language is designed for you to easily accomplish almost any task. Adding a record, sorting records, searching for data,
and similar operations are specified with simple and direct commands. But the language can also control the serial ports,
read disk documents, control sophisticated transaction processing, and much more.

The 4D language accomplishes even the most sophisticated tasks with relative simplicity. Performing these tasks without
using the language would be unimaginable for many.

Even with the language’s powerful commands, some tasks can be complex and difficult. A tool by itself does not make a task
possible; the task itself may be challenging and the tool can only ease the process. For example, a word processor makes
writing a book faster and easier, but it will not write the book for you. Using the 4D language will make the process of
managing your data easier and will allow you to approach complicated tasks with confidence.

Is it a “Traditional” Computer Language?

If you are familiar with traditional computer languages, this section may be of interest. If not, you may want to skip it.

The 4D language is not a traditional computer language. It is one of the most innovative and flexible languages available on
a computer today. It is designed to work the way you do, and not the other way around.

To use traditional languages, you must do extensive planning. In fact, planning is one of the major steps in development. 4D
allows you to start using the language at any time and in any part of your database. You may start by adding a method to a
form, then later add a few more methods. As your database becomes more sophisticated, you might add a project method
controlled by a menu. You can use as little or as much of the language as you want. It is not “all or nothing,” as is the case
with many other databases.

Traditional languages force you to define and pre-declare objects in formal syntactic terms. In 4D, you simply create an
object, such as a button, and use it. 4D automatically manages the object for you. For example, to use a button, you draw it
on a form and name it. When the user clicks the button, the language automatically notifies your methods.

Traditional languages are often rigid and inflexible, requiring commands to be entered in a very formal and restrictive style.
The 4D language breaks with tradition, and the benefits are yours.

Methods are the Gateway to the Language

A method is a series of instructions that causes 4D to perform a task. Each line of instruction in a method is called a
statement. Each statement is composed of parts of the language.

Because you have already worked through the Quickstart tutorials (you did go through Quickstart, didn’t you?), you have
already written and used methods.

You can create five types of methods with 4D:

e Object Methods: Usually short methods used to control form objects.

e Form Methods: Manage the display or printing of a form.

o Table Methods/Triggers: Used to enforce the rules of your database.

¢ Project methods: Methods that are available for use throughout your database. For example, methods that can be
attached to menus.

o Database methods: Execute initializations or special actions when a database is opened or closed, or when a Web
browser connects to your database published as a Web Server on Internet an Intranet.

The following sections introduce each of these method types and give you a feel for how you can use them to automate your
database.

Getting started with object methods

Any form object that can perform an action (that is, any active object) can have a method associated with it. An object
method monitors and manages the active object during data entry and printing. A object method is bound to its active
object even when the object is copied and pasted. This allows you to create reusable libraries of scripted objects. The object
method takes control exactly when needed.

Object methods are the primary tools for managing the user interface, which is the doorway to your database. The user
interface consists of the procedures and conventions by which a computer communicates with the user. The goal is to make
the user interface of your database as simple and easy to use as possible. The user interface should make interaction with
the computer a pleasant process, one that the user enjoys or does not even notice.

There are two basic types of active objects in a form:

e Those for entering, displaying, and storing data; such as fields and subfields
e Those for control; such as enterable areas, buttons, scrollable areas, hierarchical lists, and meters

4D enables you to build classic forms, such as the one shown here:

I=i| Entry for Employees

e e

Employses 1 a2
Department ; EOER
First Mame @ [Jarnes |
Last Mame : [Rutherford |
Position : [Supervisar
Salary
35 Nurnber :
Start date :

You can also build forms with multiple graphic controls, such as this one:

Dev support Sample II |Date: 08/01/2014 4 | Display logs from: | 08:00 * |To: 18:00 +

Date 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
mercredi 8 janvier 2014 == i [[[
mardi 7 janvier 2014
lundi & janvier 2014
dimanche 5 jarnvier 2014

samedi 4 janvier 2014
vendredi 3 janvier 2014
jeudi 2 janvier 2014

10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50

n

Operations = Network Toptens}

Operations

Process spent time Distribution

Process (Puid) Time (sec.)
Method calls: 264 5783 228 [Methods 99,86 %
287 5579732
Meth. calls per sec.: 4 262 4 880 869 O Triggers 0,14 %
240 4 054 957
286 3781 250
Cmd. calls per sec. 38 205 3757 766
237 3752715
257 3652 322

Commands calls: 135 857

mercredi 8 janvier 2014 from 10:00:00 to 11:00:00

You can even build forms that incorporate a graphical flair limited only by your imagination:

i EnE | Program from 12/6/13 to 12/12/13 12/6/13 12/7/13 12/8/13 12/9/13 | 12/10/13 | 12711513 | 12/12/13
Tu We Th Fr Sa Su A very serious man 22:00

Accident 16:30 14:00 22:00
26 27 28 29 30 1

Au feu les pompiers 16:30
3 4 5 D 7 8

10111213 14|15 [p—
17 18 19 20 21 22 Kansas City m
L ="
23 24 25 26 27 28 29 L'ay da plque 19:30

L'aube rouge
La dame de tréfle

Le dernier pub avant la fin du monde 14:00 22:00

Lebanon 14:00

4| Max et les maximonstres 14:00
Pink flamingo 19:30

Une vie toute neuve 16:30 14:00 22:00

Program from 12/13/13 to 12/19/13 12/13/13 | 12714713 | 12/15/13 | 12/16/13 | 12/17/13 | 12/18/13 | 12/19/13
A very serious man 19:30 16:30 14:00
Au feu les pompiers 14:00 22:00 19:30
Disgrice
Dréle de grenier
L'as de pique
Le dernier pub avant la fin du monde
French movies Lebanon
Kids & Teens Les liaisons dangereuses
Robert Altman Ceviathan
Padre nuestro
Stanley Kubrick

Pink flamingo
B&G festival

Red 2
Bravo

Juliett

Une place sur la terre
Walter retour en résistance
Opening night

Slerra

Whatever your style in building forms, all active objects have built-in aids, like range checking and entry filters for data entry
areas, and automatic actions for controls, menus, and buttons. Always use these aids before adding object methods. The
built-in aids are similar to methods in that they remain associated with the active object and are active only when the active
object is being used. You will typically use a combination of built-in aids and object methods to control the user interface.

An object method associated with an active object used for data entry typically performs a data-management task specific to
the field or variable. The method can perform data validation, data formatting, or calculations. It may even get related
information from other files. Some of these tasks can, of course, also be performed with the built-in data entry aids for
objects. Use object methods when the task is too complex for the built-in data entry aids to manage. For more information
about the built-in data entry aids, refer to the 4D Design Reference manual.

Object methods are also associated with active objects used for control, such as buttons. Active objects used for control are
essential to navigating within your database. Buttons allow you to move from record to record, move to different forms, and
add and delete data. These active objects simplify the use of a database and reduce the time required to learn it. Buttons
also have built-in aids and, as with data entry, you should use these built-in aids before adding methods. Object methods
enable you to add actions that are not built-in, to your controls. For example, the following window is the object method for
a button that, when clicked, displays the Query editor.

@ Method: bQuery

1 'bauery button ohject method :l
2 QUERY([Departments])

BE <] J_‘

As you become more proficient with scripts, you will find that you can create libraries of objects with associated methods.
You can copy and paste these objects and their methods between forms, tables, and databases.

Controlling forms with form methods

In the same way that object methods are associated with the active objects in a form, a form method is associated with a
form. Each form can have one form method. A form is the means through which you can enter, view, and print your data.
Forms allow you to present the data to the user in different ways. Through the use of forms, you can create attractive and

easy-to-use data entry screens and printed reports. A form method monitors and manages the use of an individual form
both for data entry and for printing.

Form methods manage forms at a higher level than do object methods. Object methods are activated only when the object
is used, whereas a form method is activated when anything in the form is used. Form methods are typically used to control
the interaction between the different objects and the form as a whole.

As forms are used in so many different ways, it is informative to monitor what is happening while your form is in use. You
use the various form events for this purpose. They tell you what is currently happening with the form. Each type of event
(i.e., clicks, double-clicks, keystrokes...) enables or disables the execution of the form method as well as the object method
of each object of the form.

For more information about form, objects, events and methods, refer to the description of the Form event command.

Enforcing the rules of your database using the table methods/triggers

A Trigger is attached to a table; for this reason, it is also called a Table Method. Triggers are automatically invoked by the 4D
database engine each you manipulate the records of a table (Add, Delete, Modify and Load). Triggers are methods that can
prevent “illegal” operations with the records of your database. For example, in an invoicing system, you can prevent anyone
from adding an invoice without specifying the customer to whom the invoice is billed. Triggers are a very powerful tool to
restrict operations on a table as well as to prevent accidental data loss or tampering. You can write very simple triggers,
then make them more and more sophisticated.

For detailed information, see the Triggers section.

Using project method throughout the database

Unlike object methods, form methods, and triggers, which are all associated with a particular object, form, or table, project
methods are available for use throughout your database. Project methods are reusable, and available for use by any other
method. If you need to repeat a task, you do not have to write identical methods for each case. You can call project methods
wherever you need them—from other project methods or from object or form methods. When you call a project method, it
acts as if you had written the method at the location where you called it. Project methods called from other method are
often referred to as “subroutines.”

There is one other way to use project methods—associating them with menu commands. When you associate a project
method with a menu command, the method is executed when the menu is chosen. You can think of the menu command as
calling the project method.

Handling working sessions with database methods

In the same way object and form methods are invoked when events occur in a form, there are methods associated with the
database which are invoked when a working session event occurs. These are the database methods. For example, each
time you open a database, you may want to initialize some variables that will be used during the whole working session. To
do so, you use the On Startup database method, automatically executed by 4D when you open the database.

For more information about Database Methods, see the Database Methods section.
Developing Your Database

Development is the process of customizing a database using the language and other built-in tools.

By simply creating a database, you have already taken the first steps to using the language. All the parts of your database—
the tables and fields, the forms and their objects, and the menus—are tied to the language. The 4D language “knows” about
all of these parts of your database.

Perhaps your first use of the language is to add a method to a form object in order to control data entry. Later, you might
add a form method to control the display of your form. As the database becomes more complex, you can add a menu bar
with project methods to completely customize your database.

As with other aspects of 4D, development is a very flexible process. There is no formal path to take during development—
you can develop in @ manner with which you are comfortable. There are, of course, some general patterns in the process.

e Implementation: Implement your design in the Design environment.

e Testing: You try out the design and test each customized element using the Test Application command to launch the
Application environment.

e Usage: When your database is fully customized, you launch it directly in the Application environment.

e Corrections: If you find errors, you return to the Design environment to fix them.

Special development support tools, hidden until needed, are built into 4D. As you use the language more frequently, you will
find that these tools facilitate the development process. For example, the Method Editor catches typing errors and formats

your work; the Interpreter (the engine that runs the language) catches errors in syntax and shows you where and what they
are; and the Debugger lets you monitor the execution of your methods to catch errors in design.

Building Applications

By now you are familiar with the general uses of a database—data entry, searching, sorting, and reporting. You have
performed these actions in the Design environment, using the standard menus and editors.

As you use a database, you perform some sequences of tasks repeatedly. For example, in a database of personal contacts,
you might search for your business associates, order them by last name, and print a specific report each time information
about them is changed. These tasks may not seem difficult, but they can certainly be time-consuming after you have done
them 20 times. In addition, if you don't use the database for a couple of weeks, you may return to find that the steps used
to generate the report are not so fresh in your mind. The steps in methods are chained together, so a single command
automatically performs all the tasks linked to it. Consequently, you do not have to worry about the specific steps.

Applications have custom menus and perform tasks that are specific to the needs of the person using your database. An
application is composed of all the pieces of your database: the structure, the forms, the object, form and project methods,
the menus, and the passwords.

You can compile your databases and create stand-alone Windows and Macintosh applications. Compiling databases increases
the execution speed of the language, protects your databases, and allows you to create applications that are completely
independent. The integrated compiler also checks the syntax and the types of variables in methods for consistency.

An application can be as simple as a single menu that lets you enter people’s names and print a report, or as complex as an
invoicing, inventory, and control system. There are no limits to the uses of database applications. Typically, an application
grows from a database used in the Design environment to a database controlled completely by custom menus and forms.

Where to go from here?

e Developing applications can be as simple or complex as you like. For a quick overview about building a simple 4D
application, see the Building a 4D Application section.

o If you are new to 4D, refer to the Language definition sections to learn about the basics of the 4D language: start
with Introduction to the 4D Language.

Building a 4D Application

An application is a database designed to fill a specific need. It has a user interface designed specifically to facilitate its use.
The tasks that an application performs are limited to those appropriate for its purpose. Creating applications with 4D is
smoother and easier than with traditional programming. 4D can be used to create a variety of applications, including:

e An invoice system

e An inventory control system

e An accounting system

e A payroll system

e A personnel system

e A customer tracking system

e A database shared over the Internet or an Intranet

It is possible that a single application could even contain all of these systems. Applications like these are typical uses of
databases. In addition, the tools in 4D allow you to create innovative applications, such as:

e A document tracking system

e A graphic image management system

e A catalog publishing application

e A serial device control and monitoring system

e An electronic mail system (E-mail)

e A multi-user scheduling system

e A list such as a menu list, video collection, or music collection

An application typically can start as a database used in the Design environment. The database “evolves” into an application
as it is customized. What differentiates an application is that the systems required to manage the database are hidden from
the user. Database management is automated, and users use menus to perform specific tasks.

When you use a 4D database in the Design environment, you must know the steps to take to achieve a result. In an
application, you use the Application environment, in which you need to manage all the aspects that are automatic in the
Design Environment. These include:

e Table Navigation: The List of Tables window, the Last used tables command or the navigation buttons are not available
to the user. You can use menu commands and methods to control navigation between tables.

e Menus: In the Application environment, you only have the default File menu with the Quit menu command, the Edit
menu, the Mode and the Help menu (as well as the application menu under Mac OS). If the application requires more
menus, you have to create and manage them using 4D methods or standard actions.

e Editors: The editors, such as the Query and Order By editors, are no longer automatically available in the Application
environment. If you want to use them, you have to call them using 4D methods.

The following sections include examples showing how the language can automate the use of a database.
Application Environment: an Example

Custom menus are the primary interface in an application. They make it easier for users to learn and use a database.
Creating custom menus is very simple—you associate methods or automatic actions with each menu command (also called
menu items) in the Menu editor.

“The User's Perspective” section describes what happens when the user chooses a menu command. Next, “Behind the
Scenes” describes the design work that made it happen. Although the example is simple, it should be apparent how custom
menus make the database easier to use and learn. Rather than the “generic” tools and menu commands in the Design
environment, the user sees only things that are appropriate to his or her needs.

The User’s Perspective

The user chooses a menu item called Create from the Employees menu to add a new person to the database.

EEEE—————————————_————————————
) Employees DB - 4D
File Edit [Employees| Company Help

Applicat

Create
Madify

Report

Ctrl+N
Ctrl+M

Ctri+E

=8 EoE =

The Input form for the Employees table is displayed.

€2 Application

First

Previous

igrdr

Next

®

Last

i@

Cancel

9

B

Employeses
1D:
First name:
Last name:
Company:
Address:
City:
State:
Zp code:

1of1

I

|
=
=

[ESE(ECE =X

E

The user enters the person’s first name and then ta

Last

i@

Cancel

9

7

@ Application {E=NECN =5
!é Employees Lof1 i
D: [
First
First name: pohn
% Last name: I
Previous Company: |
% Address: |
city: [
Next
State:]
% 7 code: .
Last
Delete
Cancel
Accept J|
The user enters the person’s last name.
e ==
!é Employees 1of1 i
:]
First
First name: [rohn
% Last name: [Dilard]
Previous Company:
% Address: [
City: [
MNext
State:]
&= =

E

bs to the next field.

The user tabs to the next field: the last name is converted to uppercase.
First name: ohn

Last name:

The user finishes entering the record and clicks the validation button (generally the last button in the button bar).

€2) Application [E=8 EcR =<7

s Employees Lof1
m: I

First

First name: Pohn
== Last name: [DILLARD
Previous Company: prntek]

Address: |132 Tech Way

igrgr

Cty: [sunnydale
State: fea

Zip code: 2140

Next

&

Last

4Ny

Cancel

Another blank record appears, and the user clicks the Cancel button (the one with the “X") to terminate the “data entry
loop.” The user is returned to the menu bar.

Behind the Scenes
The menu bar was created in the Design environment, using the Menu Bar Editor.

1T Employees - Toabox ==

. M i
Mode
Fie + Employees
=] Hode Crste New Employed
kkkkkk Employees Modty Modty Employee

Company

=] Report BuldReport | -
A

lllll

,,,,,,,

The menu item New has a project method named New Employee associated with it. This method was created in the Design
environment, using the Method editor.

18 Method: New_Employee E=n R ==
8- / - E Ted B-A@d
B Repeat

ADD RECORD ([Employees])
until (oE=0)

G L b

In5 Col0 Chil

When the user chooses this menu item, the New Employee method executes:

Repeat
ADD RECORD ([Employees])
Until (0K=0)

The Repeat...Until loop with an ADD RECORD command within the loop acts just like the New Record menu item in the
Design environment. It displays the input form to the user, so that he or she can add a new record. When the user saves the
record, another new blank record appears. This ADD RECORD loop continues to execute until the user clicks the Cancel
button.

When a record is entered, the following occurs:

e There is no method for the First Name field, so nothing executes.
e There is a method for the Last Name field. This Object Method was created in the Design environment, using the Form
and Method editors. The method executes:

[Employees]Last Name:=Uppercase ([Employees]Last Name)

This line converts the Last Name field to uppercase characters.

After a record has been entered, when the user clicks the Cancel button for the next one, the OK variable is set to zero, thus
ending the execution of the ADD RECORD loop.

As there are no more statements to execute, the New Employee method stops executing and control returns to the menu
bar.

Comparing an Automated Task with the Actions to be performed in the Design environment

Let's compare the way a task is performed in the Design environment and the way the same task is performed using the
language. The task is a common one:

e Find a group of records
e Sort them
e Print a report

The next section, “Using a Database in the Design Environment,” displays the tasks performed in the Design environment.

The following section, “Using the Built-in Editors within the Application environment,” displays the same tasks performed in
an application.

Note that although both methods perform the same task, the steps in the second section are automated using the language.

Using a database in the Design environment

The user chooses Query>Query... in the Records menu.

Records

Show Current Table (Employzes)
Last Used Tables
List of Tables
New Record in List
New Record
Medify Record
Delete Selection
Show Al

Show Subset
Query

Order By..

Apply Formula

Ctri+U
»
CtrlsShift=U

Ctrl+Shift=N
Ctrl+Alt+N

Ctrie+
Ctrls-

» Query.. CirlY

Ctrls Shift+Y.

Query by Bample.
Query and Modiy...

CtrlShift+R

Query in [Employees]

Find: [Employees]Address

The Query editor is displayed.

Elc g

The user enters the criteria and clicks the Query button

The user chooses Order by from the Records menu.

Show Current Table (Employees)
Last Used Tables
List of Tables

Mew Record in List
New Record
Modify Record
Delete Selection
Shouw All

Shouw Subset
Query

Order By

Apply Formula

Ctrl+U

»
Ctrl+ Shift+U
Ctrl+Shift+N
Ctrl+Alt+N

Ctrl++
Ctrl+-

»
Ctrl+ Shift+Y

Ctrl+Shift+R

The Order By editor is displayed.

{: ; Available Fields Ordered by Fields/Formulas
ﬁ-‘\} YD
/ A First name
A Last name
A Company
T Address @
A City
A State o
A Zip code "
- Modiy..
[[Cancel | Sort
L

. The search is performed.

The user enters the criteria and clicks the Sort button. The sort is performed.

Then, to print the records, these additional steps are required:

e The user chooses Print from the File menu.

e The Choose Print Form dialog box is displayed, because users need to know which form to print.

e The Printing dialog boxes are displayed. The user chooses the settings, and the report is printed.

Using the built-in editors within the Application environment

Let’s examine how this can be performed in the Application environment.

The User chooses Report from the Employees menu.

Even at this point, using an application is easier for the users—they did not need to know that querying is the first step!
A method called Build Report is attached to the menu command; it looks like this:

QUERY ([Emp | oyees])

ORDER BY ([Employees])

FORM SET OUTPUT ([Employees]; “Report™)
PRINT SELECTION ([Employees])

The first line is executed:
QUERY ([Employees])

The Query editor is displayed.

Find: [Employees]Address @[2l)

[—c—

The user enters the criteria and clicks the Query button. The query is performed.
The second line of the Build Report method is executed:

ORDER BY ([Employees])

Note that the user did not need to know that ordering the records was the next step.
The Order By Editor is displayed.

{: ; Available Fields Ordered by Fields/Formulas
ﬁ-‘\} X
/ A First name
A Last name
A Company
T Address @
A City
A State o
A Zip code "
- Modiy..
[[Cancel | Sort
[l

The user enters the criteria and clicks the Sort button. The sort is performed.
The third line of the Build Report method is executed:

FORM SET OUTPUT ([Employees] ; “Report™)

Once again, the user did not need to know what to do next; the method takes care of that.

The final line of the Build Report method is executed:
PRINT SELECTION ([Employees])

The Printing dialog boxes are displayed. The User chooses the settings, and the report is printed.

Automating the Application Further

The same commands used in the previous example can be used to further automate the database.
Let’s take a look at the new version of the Build Report method.

The user chooses Report from the Employees menu. A method called Build Report2 is attached to the menu command. It
looks like this:

QUERY ([Employees] ; [Employees]Company="Acme”)

ORDER BY ([Employees]; [Employees]Last Name;>; [Employees]First Name;>)
FORM SET OUTPUT [Emp|oyees];“Report”)

PRINT SELECTION ([Employees];x*)

The first line is executed:
QUERY ([Employees] ; [Emp|oyees]Company="Acme"”)

The Query editor is not displayed. Instead, the query is specified and performed by the QUERY command. The user does
not need to do anything.

The second line of the Build Report2 method is executed:
ORDER BY ([Employees]; [Employees]Last Name:>; [Employees]First Name;>)

The Order By editor is not displayed, and the sort is immediately performed. Once again, no user actions are required.

The final lines of the Build Report2 method are executed:

FORM SET OUTPUT[Employees]; “Report”)
PRINT SELECTION ([Employees];*)

The Printing dialog boxes are not displayed. The PRINT SELECTION command accepts an optional asterisk (*) parameter
that instructs the command to use the print settings that were in effect when the report form was created. The report is
printed.

This additional automation saved the user from having to enter options in three dialog boxes. Here are the benefits :

e The query is automatically performed: users may select wrong criteria when making a query.
e The sort is automatically performed: users may select wrong criteria when defining a sort.
e The printing is automatically performed: users may select the wrong form to print.

Help for Developing 4D Applications

As you develop a 4D application, you will discover many capabilities that you did not notice when you started. You can even
augment the standard version of 4D by adding other tools and plug-ins to your 4D development environment.
Plug-ins 4D
4D provides several plug-ins that can be used for increasing the capabilities of your 4D applications, including:
e 4D Write: Word-processor

e 4D View: Spreadsheet and list editor
¢ 4D Internet Commands (built-in): Communication utilities via Internet.

e 4D ODBC Pro: Connectivity via ODBC
e 4D for OCI: Connectivity with ORACLE Call Interface

For more information, contact 4D or its Partners, or visit our Web site:

http://www.4d.com

The 4D community and third party tools

There is a very active worldwide 4D community, composed of User Groups, Electronic Forums, and 4D Partners. 4D Partners
produce Third Party Tools. You can suscribe to the user forum of 4D at the following address:
http://forums.4D.fr

The 4D community offers access to tips and tricks, solutions, information, and additional tools that will save you time and
energy, and increase your productivity.

http://www.4d.com/
http://forums.4d.fr/

#» Language definition

Introduction to the 4D Language
Constants

#= Variables

#= System Variables

#= Pointers

#= Identifiers

Control Flow

i If...Else...End if

i Case of...Else...End case
While...End while

Repeat...Until

For...End for

#= Methods

Project Methods

Introduction to the 4D Language

The 4D language is made up of various components that help you perform tasks and manage your data.

o Data types: Classifications of data in a database. See discussion in this section as well as the detailed discussion in the
section Data Types.

e Variables: Temporary storage places for data in memory. See detailed discussion in the section Variables.

e Operators: Symbols that perform a calculation between two values. See discussion in this section as well as the
detailed discussion in the section Operators and its subsections.

e Expressions: Combinations of other components that result in a value. See discussion in this section.

e Commands: Built-in instructions to perform an action. All 4D commands, such as ADD RECORD, are described in this
manual, grouped by theme; when necessary, the theme is preceded by an introductory section. You can use 4D Plug-
ins to add new commands to your 4D development environment. For example, once you have added the 4D Write Plug-
in to your 4D system, the 4D Write commands become available for creating and manipulating word-processing
documents.

¢ Predefined constants: Constant values accessible by name. For example, XML DATA is a constant (value 6).
Predefined constants allow writing more readable code. Constants are described with the commands that use them,
and are fully listed in the List of constant themes section.

e Methods: Instructions that you write using all parts of the language listed here. See discussion in the section Methods
and its subsections.

This section introduces Data Types, Operators, and Expressions. For the other components, refer to the sections cited
above.

In addition:

e Language components, such as variables, have names called Identifiers. For a detailed discussion about identifiers and
the rules for naming objects, refer to the section Identifiers.

e To learn more about array variables, refer to the section Arrays.

e To learn more about BLOB variables, refer to the section BLOB Commands.

e If you plan to compile your database, refer to the section Compiler Commands as well as the Design Reference
manual of 4D.

Language for commands and constants

Starting with 4D v15, 4D's Method editor uses the international "English-US" language by default, regardless of the 4D
version or local system settings. This feature neutralizes any regional variations that might disrupt code interpretation

between 4D applications (date formats for instance); and in French versions of 4D, commands and constants are now

written in "English-US" as is already the case in other languages.

This default setting provides 4D developers with several advantages:

e It facilitates code sharing between developers, regardless of their country, regional settings, or the 4D version used. A
4D method can now be exchanged by simple copy/paste, or saved in a text file, with no compatibility issues.

o It also makes it possible to include 4D methods in source control tools, which often require exports to be independent
from regional settings and languages.

This setting can be disabled using the "Use regional system settings" option in the 4D Preferences dialog box (see the
Methods Page).

Input principles in English-US
The English-US settings may have several effects on the way you write methods. This concerns code written in development

mode as well as formulas in deployed applications. In this mode, code must comply with following rules:

e Decimal separators for real numbers must now be periods (".") in all versions (and not commas (",") as is the custom in
French, for example).
¢ Date constants must now use the ISO format (!YYYY-MM-DD!) in all versions.

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Data-Types.300-3036055.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Methods-Page.300-3048818.en.html

e Command and constant names must be in English (this change only concerns French versions of 4D, since this was
already the case with other languages).

Note: The Method editor includes specific mechanisms that automatically fix incorrect entries if necessary.
The following table illustrates differences between code in 4D v15 (or higher) and in previous versions:
Code sample in methods/formulas
4D v15 and higher (default mode, all versions) a:=12.50
b:=12013-12-31!
Current date
4D v14 or 4D v15 (preference checked, US version, for instance) a:=12.50
b:=112/31/2013!
Current date
4D v14 or 4D v15 (preference checked, French version) a:=12,50
b:=131/12/2013!
Date du jour

Note: When the preference is checked, real and date formats are based on system settings.
Data Types

In the language, the various types of data that can be stored in a 4D database are referred to as data types. There are eight
basic data types: string, numeric, date, time, Boolean, picture, and pointer.

e String: A series of characters, such as “Hello there”. Text fields and variables, as well as Alpha fields, are of the String
data type

e Numeric: Numbers, such as 2 or 1,000.67. Integer, Long Integer, and Real fields and variables are of the numeric data
type.

o Date: Calendar dates, such as 1/20/89. Date fields and variables are of the date data type.

e Time: Times, including hours, minutes, and seconds, such as 1:00:00 or 4:35:30 PM. Time fields and variables are of
the time data type.

e Boolean: Logical values of TRUE or FALSE. Boolean fields and variables are of the Boolean data type.

e Picture: Picture fields and variables are of the picture data type.

e Pointer: A special type of data used in advanced programming. Pointer variables are of the pointer data type. There is
no corresponding field type.

e Object: Composite data type which can contain any type of data sets in the form of key/value pairs. Object fields and
variables are of the Object data type.

Note that in the list of data types, the string and numeric data types are associated with more than one type of field. When
data is put into a field, the language automatically converts the data to the correct type for the field. For example, if an
integer field is used, its data is automatically treated as numeric. In other words, you need not worry about mixing similar
field types when using the language; it will manage them for you.

However, when using the language it is important that you do not mix different data types. In the same way that it makes
no sense to store “ABC” in a Date field, it makes no sense to put “ABC” in a variable used for dates. In most cases, 4D is
very tolerant and will try to make sense of what you are doing. For example, if you add a number to a date, 4D will assume
that you want to add that number of days to the date, but if you try to add a string to a date, 4D will tell you that the
operation cannot work.

There are cases in which you need to store data as one type and use it as another type. The language contains a full
complement of commands that let you convert from one data type to another. For example, you may need to create a part
number that starts with a number and ends with characters such as “abc”. In this case, you might write:

[Products]Part Number:=String (Number)+"abc”

If Number is 17, then [Products]Part Number will get the string “17abc”.
The data types are fully defined in the section Data Types.

Operators

When you use the language, it is rare that you will simply want a piece of data. It is more likely that you will want to do
something to or with that data. You perform such calculations with operators. Operators, in general, take two pieces of data
and perform an operation on them that results in a new piece of data. You are already familiar with many operators. For

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Data-Types.300-3036055.en.html

example, 1 + 2 uses the addition (or plus sign) operator to add two numbers together, and the result is 3. This table shows
some familiar numeric operators:

Operator Operation Example

I Addition 1+ 2 resultsin 3

= Subtraction 3-2resultsin 1

& Multiplication 2 * 3 results in 6

/ Division 6/ 2 results in 3
Numeric operators are just one type of operator available to you. 4D supports many different types of data, such as
numbers, text, dates, and pictures, so there are operators that perform operations on these different data types.

The same symbols are often used for different operations, depending on the data type. For example, the plus sign (+)
performs different operations with different data:

Data Type Operation Example
Number Addition 1 + 2 adds the numbers and results in 3
String Concatenation “Hello ” + “there” concatenates (joins together)

the strings and results in “Hello there”

Date and Number Date addition 11989-01-01! + 20 adds 20 days to the date
January 1, 1989, and results in the date
January 21, 1989

The operators are fully defined in the chapter Operators and its subsections.

Expressions

Simply put, expressions return a value. In fact, when using the 4D language, you use expressions all the time and tend to
think of them only in terms of the value they represent. Expressions are also sometimes referred to as formulas.

Expressions are made up of almost all the other parts of the language: commands, operators, variables, and fields. You use
expressions to build statements (lines of code), which in turn are used to build methods. The language uses expressions
wherever it needs a piece of data.

Expressions rarely “stand alone.” There are only a few places in 4D where an expression can be used by itself:

e Query by Formula dialog box

e Debugger where the value of expressions can be checked
e Apply Formula dialog box

e Quick Report editor as a formula for a column

An expression can simply be a constant, such as the number 4 or the string “Hello.” As the name implies, a constant’s value
never changes. It is when operators are introduced that expressions start to get interesting. In preceding sections you have
already seen expressions that use operators. For example, 4 + 2 is an expression that uses the addition operator to add two
numbers together and return the result 6.

You refer to an expression by the data type it returns. There are eight expression types:

e String expression

e Numeric expression (also referred to as number)
e Date expression

e Time expression

e Boolean expression

e Picture expression

e Pointer expression

e Object expression.

The following table gives examples of each type of expression.

Expression
“Hello”

“Hello ” + “there”

“Mr. " + [People]Name

Uppercase(“smith”)

4 %2

My Button

11997-01-25!

Current date + 30

?8:05:30?

?2:03:04? + ?1:02:037

True
10 # 20

IIABCII = IIXYZII

My Picture + 50

->[People]Name

Table (1)

JSON Parse(MyString)

Type
String

String

String

String

Number
Number

Number

Date

Date

Time

Time

Boolean
Boolean

Boolean

Picture

Pointer

Pointer

Object

Explanation

The word Hello is a string constant,

indicated by the double quotation marks.

Two strings, “Hello ” and “there”,

are added together (concatenated)

with the string concatenation operator (+).

The string “Hello there” is returned.

Two strings are concatenated:

the string “Mr. ” and the current value

of the Name field in the People table.

If the field contains “Smith”, the expression
returns “Mr. Smith”.

This expression uses Uppercase,

a command from the language,

to convert the string “smith” to uppercase.

It returns “SMITH".

This is @ number constant, 4.

Two numbers, 4 and 2, are multiplied

using the multiplication operator (*).

The result is the number 8.

This is the name of a button.

It returns the current value of the button:

1 if it was clicked, 0 if not.

This is a date constant for the date 1/25/97
(January 25, 1997).

This is a date expression that uses

the Current date command to get today’s date.
It adds 30 days to today’s date and returns

the new date.

This is a time constant that represents 8 hours,
5 minutes, and 30 seconds.

This expression adds two times together and
returns the time 3:05:07.

This command returns the Boolean value TRUE.
This is a logical comparison between two numbers.
The number sign (#) means “is not equal to”.
Since 10 “is not equal to” 20, the expression
returns TRUE.

This is a logical comparison between two strings.
They are not equal, so the expression returns FALSE.
This expression takes the picture in My Picture,
moves it 50 pixels to the right, and returns

the resulting picture.

This expression returns a pointer to the field
called [People]Name.

This is a command that returns a pointer to

the first table.

This is a command that returns MyString as an object (if proper format)

Constants

A constant is an expression that has a fixed value. There are two types of constants: predefined constants that you select
by name, and literal constants for which you type the actual value.

Predefined Constants

4D provides a set of predefined constants. These constants are grouped by themes in the Explorer Window:

&% Invoices - Explorer =N e |
’_ge » (i QR Operators -
» (@ QR Output Destination
» (i QR Report Types
R » (i QR Rows for Properties
» (i QR Text Properties
E‘l 4 (3 Queries
Hems 23 Description in text format
23 Description in XML farmat
] 2} Into current selection
Methods 21 Into named selection
2% Into set
o 2% Into variable
Commands > @ Relations
» (i Resources Properties
» (i SCREEN DEPTH
» (i SET RGB COLORS
W | > @ shortcut and Associated keys |2
Plug-ins L@ saL
» {3 Standard System Signatures
[l,l,l > (i System Documents
Trash » @ System Folder
» {3 System Format o
a

To use a predefined constant in a Method editor window:

e Drag and drop the constant from the Explorer window to the Method editor window.
e Directly type its name in the Method editor window. The autocomplete mechanism suggests constants that correspond
to the programming context.

Predefined constants appeared underlined by default within the Method Editor and Debugger windows:

@ Form Method: [Peoplelnput

- G_ T s
W M H
1 Sevt:=Form event

o Case of

: Sevt=0n Load

: Sevt=0On Close Box
CANCEL
End case

R Y

In the window shown here, On Load, for example, is a predefined constant.
Literal Constants

Literal Constants can be of four data types:

e String
e Numeric
e Date

e Time

String Constants

A string constant is enclosed in double, straight quotation marks ("---"). Here are some examples of string constants:

"Add Records"
"No records found."”
"Invoice"

An empty string is specified by two quotation marks with nothing between them ("").

Numeric Constants

A numeric constant is written as a real number. Here are some examples of numeric constants:

27

123.76

0.0076

Negative numbers are specified with the minus sign(-). For example:

=27

-123.76

-0.0076

Note: Since 4D v15, the default decimal separator is a period (.), regardless of the system language. If you have checked
the "Use regional system settings" option (see Methods Page), you must use the separator defined in your system.

Date Constants

A date constant is enclosed by exclamation marks (!--+!). Since 4D v15, a date must be structured using the ISO format
('YYYY-MM-DD!). Here are some examples of date constants:

11976-01-01!

12004-09-29!

12015-12-31!

A null date is specified by /00-00-00!.

Tip: The Method Editor includes a shortcut for entering a null date. To type a null date, enter the exclamation (!) character
and press Enter.

Notes:

e For compatibility reasons, 4D accepts two-digit years to be entered. A two-digit year is assumed to be in the 20th or
21st century based on whether it is greater or less than 30, unless this default setting has been changed using the SET
DEFAULT CENTURY command.

o If you have checked the "Use regional system settings" option (see Methods Page), you must use the date format
defined in your system. Generally, in a US environment, dates are entered in the form month/day/year, with a slash "/"
separating the values.

Time Constants

A time constant is enclosed by question marks (?...?).

In the US English version of 4D, a time constant is ordered hour:minute:second, with a colon (:) setting off each part. Times
are specified in 24-hour format.

Here are some examples of time constants:

200:00:00? ° midnight

209:30:00? * 9:30 am

?13:01:59? * 1 pm, 1 minute, and 59 seconds

A null time is specified by ?00:00:007?

Tip: The Method Editor includes a shortcut for entering a null time. To type a null time, enter the question mark (?)
character and press Enter.

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Methods-Page.300-3048818.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Methods-Page.300-3048818.en.html

Variables

Data in 4D is stored in two fundamentally different ways. Fields store data permanently on disk; variables store data
temporarily in memory.

When you set up your 4D database, you specify the names and types of fields that you want to use. Variables are much the
same—you also give them names and different types.

The following variable types correspond to each of the data types:

e String(*) or Text: Alphanumeric string of up to 2 GB of text

o Integer: Integer from -32768 to 32767

e Long Integer: Integer from -2731 to (2731)-1

e Real: A number to £1.7e£308 (13 significant digits)

e Date: 1/1/100 to 12/31/32767

e Time: 00:00:00 to 596000:00:00 (seconds from midnight)

e Boolean: True or False

e Picture: Any Windows or Macintosh picture

e Object: A set of "property/value" pairs structured in a JSON type format
e BLOB (Binary Large OBject): Series of bytes up to 2 GB in size

e Pointer: A pointer to a table, field, variable, array, or array element

(*) In Unicode mode, String and Text type variables are identical. In non-Unicode mode (compatibility mode), a String is a
fixed alphanumeric string of up to 255 characters.

You can display variables (except Pointer and BLOB) on the screen, enter data into them, and print them in reports. In these
ways, enterable and non-enterable area variables act just like fields, and the same built-in controls are available when you
create them:

Display formats

Data validation, such entry filters and default values
e Character filters

Choice lists (hierarchical lists)

e Enterable or non-enterable values

Variables can also do the following:

e Control buttons (buttons, check boxes, radio buttons, 3D buttons, and so on)
e Control sliders (meters, rulers, and dials)

e Control scrollable areas, pop-up menus, and drop-down list boxes

e Control hierarchical lists and hierarchical pop-up menus

e Control button grids, tab controls, picture buttons, and so on

e Display results of calculations that do not need to be saved.

Creating Variables

You can create variables simply by using them; you do not necessarily need to formally define them as you do with fields.
For example, if you want a variable that will hold the current date plus 30 days, you write:

MyDate:=Current date+30

4D creates MyDate and holds the date you need. The line of code reads “MyDate gets the current date plus 30 days.” You
could now use MyDate wherever you need it in your database. For example, you might need to store the date variable in a
field of same type:

[MyTableIMyField:=MyDate

However, it is usually recommended for a variable to be explicitly defined as a certain type. For more information about
typing variables for a database, see the chapter Compiler.

Assigning Data to Variables

Data can be put into and copied out of variables. Putting data into a variable is called assigning the data to the variable
and is done with the assignment operator (:=). The assignment operator is also used to assign data to fields.

The assignment operator is the primary way to create a variable and to put data into it. You write the name of the variable
that you want to create on the left side of the assignment operator. For example:

MyNumber :=3

creates the variable MyNumber and puts the number 3 into it. If MyNumber already exists, then the number 3 is just put
into it.

Of course, variables would not be very useful if you could not get data out of them. Once again, you use the assignment
operator. If you need to put the value of MyNumber in a field called [Products]Size, you would write MyNumber on the
right side of the assignment operator:

[Products]Size:=MyNumber

In this case, [Products]Size would be equal to 3. This example is rather simple, but it illustrates the fundamental way that
data is transferred from one place to another by using the language.

Important: Be careful not to confuse the assignment operator (:=) with the comparison operator, equal (=). Assignment
and comparison are very different operations. For more information about the comparison operators, see the section
Operators.

Local, Process, and Interprocess Variables

You can create three types of variables: local variables, process variables, and interprocess variables. The difference
between the three types of variables is their scope, or the objects to which they are available.

Local variables

A local variable is, as its name implies, local to a method—accessible only within the method in which it was created and not
accessible outside of that method. Being local to a method is formally referred to as being “local in scope.” Local variables
are used to restrict a variable so that it works only within the method.

You may want to use a local variable to:

e Avoid conflicts with the names of other variables
e Use data temporarily
e Reduce the number of process variables

The name of a local variable always starts with a dollar sign ($) and can contain up to 31 additional characters. If you enter
a longer name, 4D truncates it to the appropriate length.

When you are working in a database with many methods and variables, you often find that you need to use a variable only
within the method on which you are working. You can create and use a local variable in the method without worrying about
whether you have used the same variable name somewhere else.

Frequently, in a database, small pieces of information are needed from the user. The Request command can obtain this
information. It displays a dialog box with a message prompting the user for a response. When the user enters the response,
the command returns the information the user entered. You usually do not need to keep this information in your methods for
very long. This is a typical way to use a local variable. Here is an example:

$vsiD:=Request (“"Please enter your ID:”)
[(0K=1)

QUERY ([People]; [PeoplelID =$vsID)
End if

This method simply asks the user to enter an ID. It puts the response into a local variable, $vsID, and then searches for the
ID that the user entered. When this method finishes, the $vsID local variable is erased from memory. This is fine, because
the variable is needed only once and only in this method.

Process variables

A process variable is available only within a process. It is accessible to the process method and any other method called from
within the process.

A process variable does not have a prefix before its name. A process variable name can contain up to 31 characters.

In interpreted mode, variables are maintained dynamically; they are created and erased from memory “on the fly.” In
compiled mode, all processes you create (user processes) share the same definition of process variables, but each process
has a different instance for each variable. For example, the variable myVar is one variable in the process P_1 and another
one in the process P_2.

A process can “peek and poke” process variables from another process using the commands GET PROCESS VARIABLE and
SET PROCESS VARIABLE. It is good programming practice to restrict the use of these commands to the situation for which
they were added to 4D:

e Interprocess communication at specific places or your code

e Handling of interprocess drag and drop

¢ In Client/Server, communication between processes on client machines and the stored procedures running on the
server machines

For more information, see the chapter Processes and the description of these commands.

Interprocess variables

Interprocess variables are available throughout the database and are shared by all processes. They are primarily used to
share information between processes.

The name of an interprocess variable always begins with the symbols (<>) — a “less than” sign followed by a “greater than”
sign— followed by 31 characters.

Note: This syntax can be used on both Windows and Macintosh. In addition, on Macintosh only, you can use the diamond
(Option-Shift-V on US keyboard).

In Client/Server, each machine (Client machines and Server machine) share the same definition of interprocess variables,
but each machine has a different instance for each variable.

Form Object Variables

In the Form editor, naming an active object—button, radio button, check box, scrollable area, meter bar, and so on—
automatically creates a variable, having the same name by default. For example, if you create a button named MyButton, a
variable named MyButton is also created. Note that this variable name is not the label for the button, but is the name of the
button.

The form object variables allow you to control and monitor the objects. For example, when a button is clicked, its variable is
set to 1; at all other times, it is 0. The variable associated with a meter or dial lets you read and change the current setting.
For example, if you drag a meter to a new setting, the value of the variable changes to reflect the new setting. Similarly, if a
method changes the value of the variable, the meter is redrawn to show the new value.

For more information about variables and forms, see the 4D Design Reference Manual as well as the chapter Form Events.

Dynamic variables

You can leave it up to 4D to create variables associated with your form objects (buttons, enterable variables, check boxes,
etc.) dynamically and according to your needs. To do this, simply leave the "Variable Name" field blank in the Property list for
the object:

. #
Myvar, Property List =]

A myvan x] @~

8 @=L || 3]

¥ (} Objects -
Type Variable

Object Name MyVar

Variable Name

Variable Type String [=]

» P DataSource

» -4 Coordinates & Sizing

» ;" Resizing Options

When a variable is not named, when the form is loaded, 4D creates a new variable for the object, with a calculated name
that is unique in the space of the process variables of the interpreter (which means that this mechanism can be used even in
compiled mode). This temporary variable will be destroyed when the form is closed.

In order for this principle to work in compiled mode, it is imperative that dynamic variables are explicitly typed. There are
two ways to do this:

e You can set the type using the "Variable Type" menu of the Property list.
Note: When the variable is named, the "Variable Type" menu does not actually type the variable but simply allows the
options of the Property list to be updated (except for picture variables). In order to type a named variable, it is
necessary to use the commands of the Compiler theme.

e You can use a specific initialization code when the form is loaded that uses, for example, the VARIABLE TO VARIABLE
command:

[f (Form event=0n Load)
C_TEXT(§init)
$Ptr_object:=0BJECT Get pointer (Object named;”comments”)
$init:=""
VARIABLE TO VARIABLE (Current process;$Ptr_object—>;§init)
End if

Note: If you specify a dynamic variable, select the value None in the "Variable Type" menu, and do not use initialization
code, a typing error will be returned by the compiler.

In the 4D code, dynamic variables can be accessed using a pointer obtained with the OBJECT Get pointer command. For
example:

$p :=OBJECT Get pointer (Object named;”tstart”)
$p—>1=212:00:007?

There are two advantages with this mechanism:

e On the one hand, it allows the development of "subform" type components that can be used several times in the same
host form. Let us take as an example the case of a datepicker subform that is inserted twice in a host form to set a
start date and an end date. This subform will use objects for choosing the date of the month and the year. It will be
necessary for these objects to work with different variables for the start date and the end date. Letting 4D create their
variable with a unique name is a way of resolving this difficulty.

e On the other hand, it can be used to limit memory usage. In fact, form objects only work with process or inter-process
variables. However, in compiled mode, an instance of each process variable is created in all the processes, including the
server processes. This instance takes up memory, even when the form is not used during the session. Therefore, letting
4D create variables dynamically when loading the forms can economize memory.

Note: When there is no variable name, the object name is shown in quotation marks in the form editor (when the object
display a variable name by default).

System Variables

4D maintains a number of variables called system variables. These variables let you monitor many operations. System
variables are all process variables, accessible only from within a process.

The most important system variable is the OK system variable. As its name implies, it tells you if everything is OK in the
particular process. Was the record saved? Has the importing operation been completed? Did the user click the OK button?
The OK system variable is set to 1 when a task is completed successfully, and to 0 when it is not.

For more information about system variables, see the section System Variables.

System Variables

4D manages system variables, which allow you to control the execution of different operations. All system variables are
process variables that can only be accessed within one process. This section describes 4D system variables.

For more information about the type of these variables, refer to System variables in the Typing Guide.

OK

This is the most commonly used system variable. Usually it is set to 1 when an operation is successfully executed. It is set to
0 when the operation fails. Many 4D commands modify the value of the OK system variable. Refer to the description of each
command to find out whether it affects this system variable.

In this documentation, the pictogram & indicates that a command modifies the value of the OK variable. You can click

on this picture in order to generate a list of all the commands concerned.

Document

Document contains the "long name" (access path+name) of the last file opened or created using the following commands:

Append document BUILD APPLICATION
Create document _0_Create resource file
EXPORT DATA EXPORT DIF

EXPORT SYLK EXPORT TEXT

GET DOCUMENT ICON IMPORT DATA
IMPORT DIF IMPORT SYLK
IMPORT TEXT LOAD SET

LOAD VARIABLES Open document
Open resource file PRINT LABEL

QR REPORT READ PICTURE FILE
SAVE VARIABLES SAVE SET

Select document SELECT LOG FILE
SET CHANNEL USE CHARACTER SET

WRITE PICTURE FILE

FldDelimit

FldDelimit contains the character code that will be used as a field separator when importing or exporting text. By default,
this value is set to 9, which is the character code for the Tab key. To use a different field separator, assign a new value to
FldDelimit.

RecDelimit

RecDelimit contains the character code that will be used as a record separator when importing or exporting text. By default,
this value is set to 13, which is the character code for the Carriage Return key. To use a different record separator, assign a
new value to RecDelimit.

Error, Error method, Error line, Error formula

These variables can only be used in an error-catching method installed by the ON ERR CALL command. If you want for
them to be accessible in the method that caused the error, copy their value into your own process variables.

e Error: Longint type system variable. This variable contains the error code. 4D error codes and system error codes
are listed in sections of the Error Codes theme.
o Error method: Text type system variable. This variable contains the full name of the method that triggered the
error.
e Error line: Longint type system variable. This variable contains the line number at the origin of the error in the
method that triggered the error.
e Error formula: Text type system variable. This variable contains the formula of the 4D code (raw text) which is at
the origin of the error. The text of the formula is expressed in the current language of the 4D code.
If the source code responsible for the error cannot be found, Error formula contains an empty string. This case
can occur in compiled databases when:
o the source code was deleted from the compiled structure using the application builder.
o the source code is available but the database was compiled without the Range Checking option.

MouseDown, MouseX, MouseY, KeyCode, Modifiers and MouseProc

These system variables can only be used in a method installed by the ON EVENT CALL command (except MouseX and
MouseY in some cases, see below).

e MouseDown is set to 1 when the mouse button is pushed. Otherwise, it is set to 0.

e If the event is a MouseDown (MouseDown=1), the MouseX and MouseY system variables are respectively set to the
vertical and horizontal coordinates of the location where the click took place. Both values are expressed in pixels and
use the local coordinate system of the window.

e In case of picture fields or variables, the MouseX and MouseY system variables return the local coordinates of a mouse
click in the On Clicked, On Double Clicked and On Mouse Up form events. Local coordinates of the mouse cursor are
also returned in the On Mouse Enter and On Mouse Move form events. The coordinates are expressed in pixels with
respect to the top left corner of the picture (0,0). For more information, please refer to the Pictures section and the
SVG Find element ID by coordinates command.

e KeyCode is set to the character code of the key that was just pressed. If the key is a function key, KeyCode is set to a
special code. Character codes and function key codes are listed in the sections Unicode Codes, EXPORT TEXT and
Function Key Codes.

e Modifiers is set to the keyboard modifier keys (Ctrl/Command, Alt/Option, Shift, Caps Lock). This variable is only
significant in an "interruption on event" installed by the command ON EVENT CALL.

e MouseProc is set to the process number in which the last event took place.

Pointers

Description

Pointers provide an advanced way (in programming) to refer to data.

When you use the language, you access various objects—in particular, tables, fields, variables, and arrays—by simply using
their names. However, it is often useful to refer to these elements and access them without knowing their names. This is
what pointers let you do.

The concept behind pointers is not that uncommon in everyday life. You often refer to something without knowing its exact
identity. For example, you might say to a friend, “Let’s go for a ride in your car” instead of “Let’s go for a ride in the car with
license plate 123ABD.” In this case, you are referencing the car with license plate 123ABD by using the phrase “your car”
The phrase “car with license plate 123ABD" is like the name of an object, and using the phrase “your car” is like using a
pointer to reference the object.

Being able to refer to something without knowing its exact identity is very useful. In fact, your friend could get a new car,
and the phrase “your car” would still be accurate—it would still be a car and you could still take a ride in it. Pointers work the
same way. For example, a pointer could at one time refer to a numeric field called Age, and later refer to a numeric variable
called Old Age. In both cases, the pointer references numeric data that could be used in a calculation.

You can use pointers to reference tables, fields, variables, arrays, and array elements. The following table gives an example
of each data type:

Object To Reference To Use To Assign

Table vpTable:=->[Table] DEFAULT TABLE(vpTable->) n/a

Field vpField: =->[Table]Field ALERT(vpField->) vpField->:="John"

Variable vpVar:=->Variable ALERT(vpVar->) vpVar->:="John"

Array VpArr:=->Array SORT ARRAY(VpArr->;>) COPY ARRAY (Arr;VvpArr->)
Array element vpElem:=->Array{1} ALERT (vpElem->) vpElem->:="John"

Using Pointers: An Example

It is easiest to explain the use of pointers through an example. This example shows how to access a variable through a
pointer. We start by creating a variable:

MyVar:="Hel lo”

MyVar is now a variable containing the string “Hello.” We can now create a pointer to MyVar:

MyPointer :==>MyVar

The -> symbol means “get a pointer to.” This symbol is formed by a dash followed by a “greater than” sign. In this case, it
gets the pointer that references or “points to” MyVar. This pointer is assigned to MyPointer with the assignment operator.

MyPointer is now a variable that contains a pointer to MyVar. MyPointer does not contain “Hello”, which is the value in
MyVar, but you can use MyPointer to get this value. The following expression returns the value in MyVar:

MyPointer->

In this case, it returns the string “Hello”. The -> symbol, when it follows a pointer, references the object pointed to. This is
called dereferencing.

It is important to understand that you can use a pointer followed by the -> symbol anywhere that you could have used the
object that the pointer points to. This means that you could use the expression MyPointer-> anywhere that you could use
the original MyVar variable.

For example, the following line displays an alert box with the word Hello in it:

ALERT (MyPointer—>)

You can also use MyPointer to change the data in MyVar. For example, the following statement stores the string "Goodbye"
in the variable MyVar:

MyPointer—>:="Goodbye”

If you examine the two uses of the expression MyPointer->, you will see that it acts just as if you had used MyVar instead.
In summary, the following two lines perform the same action—both display an alert box containing the current value in the
variable MyVar:

ALERT (MyPointer—>)
ALERT (MyVar)

The following two lines perform the same action— both assign the string "Goodbye" to MyVar:

MyPointer->:="Goodbye”
MyVar :="Goodbye”

Using Pointers to Buttons

This section describes how to use a pointer to reference a button. A button is (from the language point of view) nothing
more than a variable. Although the examples in this section use pointers to reference buttons, the concepts presented here
apply to the use of all types of objects that can be referenced by a pointer.

Let’s say that you have a number of buttons in your forms that need to be enabled or disabled. Each button has a condition
associated with it that is TRUE or FALSE. The condition says whether to disable or enable the button. You could use a test
like this each time you need to enable or disable the button:

[T (Condition)

OBJECT SET ENABLED (MyButton;True)
Else

OBJECT SET ENABLED (MyButton;False)
End if

You would need to use a similar test for every button you set, with only the name of the button changing. To be more
efficient, you could use a pointer to reference each button and then use a subroutine for the test itself.

You must use pointers if you use a subroutine, because you cannot refer to the button’s variables in any other way. For
example, here is a project method called SET BUTTON, which references a button with a pointer:

I7($2)

OBJECT SET ENABLED ($1->;True)
Else

OBJECT SET ENABLED ($1->;False)
End if

You can call the SET BUTTON project method as follows:

SET BUTTON(->bVal idate; True)
SET BUTTON(->bVal idate;False)
SET BUTTON(->bVal idate; ([Employee]llast Name#””)
For (§vIRadioButton;1;20)
$vpRadioButton:=Get pointer (“r“+String($vIRadioButton))

SET BUTTON($vpRadioButton;False)
End for

Using Pointers to Tables

Anywhere that the language expects to see a table, you can use a dereferenced pointer to the table.
You create a pointer to a table by using a line like this:

TablePtr:=->[anyTable]

You can also get a pointer to a table by using the Table command. For example:

TablePtr:=Table (20)

You can use the dereferenced pointer in commands, like this:

DEFAULT TABLE (TablePtr->)

Using Pointers to Fields
Anywhere that the language expects to see a field, you can use a dereferenced pointer to reference the field. You create a

pointer to a field by using a line like this:

FieldPtr:=—>[aTable]ThisField

You can also get a pointer to a field by using the Field command. For example:

FieldPtr:=Field(1;2)

You can use the dereferenced pointer in commands, like this:

OBJECT SET FONT (FieldPtr—>;"Arial”)

Using Pointers to Variables

The example at the beginning of this section illustrates the use of a pointer to a variable:

MyVar:="Hel lo”
MyPointer :=—>MyVar

You can use pointers to interprocess, process and, starting with version 2004.1, local variables.

When you use pointers to process or local variables, you must be sure that the variable pointed to is already set when the
pointer is used. Keep in mind that local variables are deleted when the method that created them has completed its
execution and process variables are deleted at the end of the process that created them. When a pointer calls a variable that
no longer exists, this causes a syntax error in interpreted mode (variable not defined) but it can generate a more serious
error in compiled mode.

Note about local variables: Pointers to local variables allow you to save process variables in many cases. Pointers to local
variables can only be used within the same process.

In the debugger, when you display a pointer to a local variable that has been declared in another method, the original
method name is indicated in parentheses, after the pointer. For example, if you write in Method1:

$MyVar :="Hello wor ld”
Method2(->$MyVar)

In Method2, the debugger will display $1 as follows:
$1 ->$MyVar (Method1)

The value of $1 will be:
$MyVar (Method1) "Hello world"

Using Pointers to Array Elements

You can create a pointer to an array element. For example, the following lines create an array and assign a pointer to the
first array element to a variable called ElemPtr:

ARRAY REAL (anArray;10)
ElemPtr:=—>anArray {1}

You could use the dereferenced pointer to assign a value to the element, like this:

ElemPtr->:=8

Using Pointers to Arrays

You can create a pointer to an array. For example, the following lines create an array and assign a pointer to the array to a
variable called ArrPtr:

ARRAY REAL (anArray;10)
ArrPtr:=—>anArray

It is important to understand that the pointer points to the array; it does not point to an element of the array. For example,
you can use the dereferenced pointer from the preceding lines like this:

SORT ARRAY (ArrPtr->:>)

If you need to refer to the fourth element in the array by using the pointer, you do this:

ArrPtr—> {4} :=84

Using an Array of Pointers

It is often useful to have an array of pointers that reference a group of related objects.

One example of such a group of objects is a grid of variables in a form. Each variable in the grid is sequentially numbered,
for example: Varl,Var2,---, Var10. You often need to reference these variables indirectly with a number. If you create an
array of pointers, and initialize the pointers to point to each variable, you can then easily reference the variables. For
example, to create an array and initialize each element, you could use the following lines:

ARRAY POINTER (apPointers;10)
For (§i;1;10)

apPointers{$i}:=Get pointer ("Var”+String($i))
End for

The Get pointer function returns a pointer to the named object.

To reference any of the variables, you use the array elements. For example, to fill the variables with the next ten dates
(assuming they are variables of the date type), you could use the following lines:

For ($i;1;10)
apPointers{$i}->:=Current date+$i
End for

Setting a Button Using a Pointer

If you have a group of related radio buttons in a form, you often need to set them quickly. It is inefficient to directly
reference each one of them by name. Let’s say you have a group of radio buttons named Button1, Button2,---, Button5.

In a group of radio buttons, only one radio button is on. The number of the radio button that is on can be stored in a
numeric field. For example, if the field called [Preferences]Setting contains 3, then Button3 is selected. In your form
method, you could use the following code to set the button:

Case of
: (Form event=0n Load)

Case of
I ([Preferences]Setting=1)

Buttonl:=1
:([Preferences]Setting=2)
Button2:=1
:([Preferences]Setting=3)
Button3:=1
:([Preferences]Setting=4)
Button4:=1
:([Preferences]Setting=5)
Buttonb:=1
End case

End case

A separate case must be tested for each radio button. This could be a very long method if you have many radio buttons in
your form. Fortunately, you can use pointers to solve this problem. You can use the Get pointer command to return a
pointer to a radio button. The following example uses such a pointer to reference the radio button that must be set. Here is
the improved code:

Case of
: (Form event=0n Load)

$vpRadio:=Get pointer (“Button”+String([Preferences]Setting))
$vpRadio->:=1

End case

The number of the set radio button must be stored in the field called [Preferences]Setting. You can do so in the form method
for the On Clicked event:

[Preferences]Setting:=Buttonl+ (Button2+2)+ (Button3*3)+ (Buttond*4) + (Button5*b)

Passing Pointers to Methods

You can pass a pointer as a parameter to a method. Inside the method, you can modify the object referenced by the pointer.
For example, the following method, TAKE TWO, takes two parameters that are pointers. It changes the object referenced by
the first parameter to uppercase characters, and the object referenced by the second parameter to lowercase characters.
Here is the method:

$1->:=Uppercase ($1->)
$2->:=Lowercase ($2->)

The following line uses the TAKE TWO method to change a field to uppercase characters and to change a variable to
lowercase characters:

TAKE TWO(->[My TablelMy Field;->MyVar)

If the field [My Table]My Field contained the string "jones’, it would be changed to the string "JONES". If the variable MyVar
contained the string "HELLO', it would be changed to the string "hello".

In the TAKE TWO method, and in fact, whenever you use pointers, it is important that the data type of the object being
referenced is correct. In the previous example, the pointers must point to an object that contains a string or text.

Pointers to Pointers

If you really like to complicate things, you can use pointers to reference other pointers. Consider this example:

MyVar:="Hel lo”
PointerOne:=—>MyVar
PointerTwo:=—>PointerOne
(PointerTwo—>)—>:="Goodbye”
ALERT ((Point Two—->)->)

It displays an alert box with the word “Goodbye” in it.
Here is an explanation of each line of the example:

e MyVar:="Hello"
--> This line puts the string "Hello" into the variable MyVar.

e PointerOne:=->MyVar
--> PointerOne now contains a pointer to MyVar.

e PointerTwo:=->PointerOne
--> PointerTwo (a new variable) contains a pointer to PointerOne, which in turn points to MyVar.

e (PointerTwo->)->:="Goodbye"
--> PointerTwo-> references the contents of PointerOne, which in turn references MyVar. Therefore (PointerTwo-
>)-> references the contents of MyVar. So in this case, MyVar is assigned "Goodbye".

e ALERT ((PointerTwo->)->)
--> Same thing: PointerTwo-> references the contents of PointerOne, which in turn references MyVar. Therefore
(PointerTwo->)-> references the contents of MyVar. So in this case, the alert box displays the contents of myVar.

The following line puts "Hello" into MyVar:

(PointerTwo—>)->:="Hel l0”

The following line gets "Hello" from MyVar and puts it into NewVar:

NewVar :=(PointerTwo—>) —>

Important: Multiple dereferencing requires parentheses.

Identifiers

This section describes the conventions for naming various objects in the 4D language. The names for all objects follow these
rules:

e A name must begin with an alphabetic character or an underscore.

e Thereafter, the name can include alphabetic characters, numeric characters, the space character, and the underscore
character.

e Periods, slashes, quotation marks and colons are not allowed.

e Characters reserved for use as operators, such as * and +, are not allowed.

e 4D ignores any trailing spaces.

Note: Additional rules need to be respected when objects need to be handled via SQL: only the characters
_0123456789abcdefghijkimnopgrstuvwxyz are accepted, and the name must not include any SQL keywords (command,
attribute, etc.). The "SQL" area of the Inspector in the Structure editor automatically indicates any unauthorized characters
in the name of a table or field.

Tables

You denote a table by placing its name between brackets: [...]. A table name can contain up to 31 characters.

Examples

DEFAULT TABLE ([Orders])
FORM SET INPUT ([Clients];“Entry”)
ADD REGORD ([Letters])

Fields

You denote a field by first specifying the table to which the field belongs. The field name immediately follows the table name.
A field name can contain up to 31 characters.

Examples
[Orders]Total :=Sum([Line]Amount)

QUERY ([Clients]; [ClientsIName="Smith")
[Letters]Text:=Capitalize text([Letters]Text)

Interprocess Variables

You denote an interprocess variable by preceding the name of the variable with the symbols (<>) — a “less than” sign
followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on Macintosh only, you can use the diamond
(Option-Shift-V on US keyboard).

An interprocess variable can have up to 31 characters, not including the <> symbols.
Examples
<OvIProcessID:=Current process

<vsKey :=Char (KeyCode)
[(OvitName#t”™)

Process Variables

You denote a process variable by using its name (which cannot start with the <> symbols nor the dollar sign $). A process
variable name can contain up to 31 characters.

Examples

OvrGrandTotal :=Sum ([Accounts]Amount)
[T (bValidate=1)
vsCurrentName:=""

Local Variables

You denote a local variable with a dollar sign ($) followed by its name. A local variable name can contain up to 31
characters, not including the dollar sign.

Examples

For ($vIRecord;1;100)
If ($vsTempVar="No")
$vsMyString:="Hel lo there”

Arrays

You denote an array by using its name, which is the name you passed to the array declaration (such as ARRAY LONGINT)
when you created the array. Arrays are variables, and from the scope point of view, like variables, there are three different
types of arrays:

e Interprocess arrays,
e Process arrays,
e Local arrays.

Interprocess Arrays
The name of an interprocess array is preceded by the symbols (<>) — a “less than” sign followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on Macintosh only, you can use the diamond
(Option-Shift-V on US keyboard).

An interprocess array name can contain up to 31 characters, not including the <> symbols.

Examples

ARRAY TEXT (<>atSubjects:;Records in table ([Topics]))
SORT ARRAY (<>asKeywords;>)
ARRAY INTEGER (<>aiBigArray;10000)

Process Arrays
You denote a process array by using its name (which cannot start with the <> symbols nor the dollar sign $). A process
array name can contain up to 31 characters.

Examples

ARRAY TEXT (atSubjects;Records in table([Topics]))
SORT ARRAY (asKeywords;>)
ARRAY INTEGER (aiBigArray;10000)

Local Arrays
The name of a local array is preceded by the dollar sign ($). An local array name can contain up to 31 characters, not
including the dollar sign.

Examples

ARRAY TEXT ($atSubjects;Records in table ([Topics]))
SORT ARRAY ($asKeywords;>)
ARRAY INTEGER ($aiBigArray;10000)

Elements of arrays
You reference an element of an interprocess, process or local array by using the curly braces({:--}). The element referenced
is denoted by a numeric expression.

Examples

[T (OasKeywords {1}="Stop”)
OatSubjects {$vIElem) :=[Topics]Subject
$viNextValue:=<>aiBigArray{Size of array(<>aiBigArray)}

[(asKeywords {1}="Stop”)
atSubjects{$vIElem} :=[Topics]Subject
$viNextValue:=aiBigArray{Size of array(aiBigArray)}

If ($asKeywords {1}="Stop”)
$atSub jects {$vIElem} :=[Topics]Subject
$viNextValue:=$aiBigArray {Size of array($aiBigArray)}

Elements of two-dimensional arrays
You reference an element of a two-dimensional array by using the curly braces ({::-}) twice. The element referenced is
denoted by two numeric expressions in two sets of curly braces.

Examples

I (OasKeywords {$v INextRow} {1}="Stop”)
<>atSubjects {10} {$vIElem} :=[Topics]Sub ject
$viNextValue:=<>aiBigArray {$viSet} {Size of array(<aiBigArray{$vISet})}

[f (asKeywords {$v|NextRow} {1}="Stop”)
atSubjects {10} {$vIElem} :=[Topics]Subject
$viNextValue:=aiBigArray{$vISet} {Size of array(aiBigArray{$viSet})}

I ($asKeywords {$vINextRow} {1}="Stop™)
$atSubjects {10} {$vIEIem} :=[Topics]lSubject
$viNextValue:=$aiBigArray{$viSet} {Size of array(§aiBigArray{$viSet})}

Forms

You denote a form by using a string expression that represents its name. A form name can contain up to 31 characters.
Examples

FORM SET INPUT ([People];”Input”)

FORM SET OUTPUT ([People];“Output™)
DIALOG ([Storage] ; “Note box”+String($vIStage))

Form objects

You designate a form object by passing its name as a string, preceded by the* parameter. An object name can contain up to
255 bytes.
Example :

OBJECT SET FONT (*;“Binfo”;“Times™)

See also the Object Properties section.

Methods

You denote a method (procedure and function) by using its name. A method name can contain up to 31 characters.

Note: A method that does not return a result is also called a procedure. A method that returns a result is also called a
function.

Examples

[T (New client)
DELETE DUPLICATED VALUES
APPLY TO SELECTION ([Employees]; INCREASE SALARIES)

Tip: It is a good programming technique to adopt the same naming convention as the one used by 4D for built-in
commands. Use uppercase characters for naming your methods; however if a method is a function, capitalize the first
character of its name. By doing so, when you reopen a database for maintenance after a few months, you will already know
if a method returns a result by simply looking at its name in the Explorer window.

Note: When you call a method, you just type its name. However, some 4D built-in commands, such as ON EVENT CALL, as
well as all the Plug-In commands, expect the name of a method as a string when a method parameter is passed. Example:

Examples

QUERY BY FORMULA ([aTable];Special query)
APPLY TO SELECTION ([Employees]; INCREASE SALARIES)
ON EVENT CALL ("HANDLE EVENTS™)

WR ON ERROR("WR HANDLE ERRORS”)

Methods can accept parameters (arguments). The parameters are passed to the method in parentheses, following the name
of the method. Each parameter is separated from the next by a semicolon (;). The parameters are available within the called
method as consecutively numbered local variables: $1, $2,---, $n. In addition, multiple consecutive (and last) parameters
can be addressed with the syntax ${n}where n, numeric expression, is the number of the parameter.

Inside a function, the $0 local variable contains the value to be returned.

Examples

DROP SPACES(->[Peop | e]Name)

$vsResult:=Calc creator(1;5;"Nice”)

vtClone:=Dump(“is”;"the”;”it")

Plug-In Commands (External Procedures, Functions and Areas)

You denote a plug-in command by using its name as defined by the plug-in. A plug-in command name can contain up to 31
characters.

Examples

WR BACKSPACE (wrArea;0)
$pvNewArea:=PV New offscreen area

Sets

From the scope point of view, there are two types of sets:

e Interprocess sets
e Process sets.

4D Server also includes:

e Client sets.

Interprocess Sets
A set is an interprocess set if the name of the set is preceded by the symbols (<>) — a “less than” sign followed by a
“greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on Macintosh only, you can use the diamond
(Option-Shift-V on US keyboard).

An interprocess set name can contain up to 255 characters, not including the <> symbols.

Process Sets
You denote a process set by using a string expression that represents its name (which cannot start with the <> symbols or
the dollar sign $). A set name can contain up to 255 characters.

Client Sets
The name of a client set is preceded by the dollar sign ($). A client set name can contain up to 255 characters, not including
the dollar sign.

Note: Sets are maintained on the Server machine. In certain cases, for efficiency or special purposes, you may need to work
with sets locally on the Client machine. To do so, you use Client sets.

Examples

USE SET (“<>Deleted Records™)
CREATE SET ([Customers];“<>Customer Orders”)
[T (Records in set ("< Selection”+String ($i))>0)

USE SET (“Deleted Records™)
CREATE SET ([Customers];“Customer Orders™)
[T (Records in set ("< Selection”+String($i))>0)

USE SET (“$Deleted Records”)
CREATE SET ([Customers];”“$Customer Orders™)
[T (Records in set("$Selection”+String($i))>0)

Named Selections

From the scope point of view, there are two types of named selections:

e Interprocess named selections
e Process named selections.

Interprocess Named Selections
A named selection is an interprocess named selection if its name is preceded by the symbols (<>) — a “less than” sign
followed by a “greater than” sign.

Note: This syntax can be used on both Windows and Macintosh. In addition, on Macintosh only, you can use the diamond
(Option-Shift-V on US keyboard).

An interprocess hamed selection name can contain up to 255 characters, not including the <> symbols.

Process Named Selections
You denote a process named selection by using a string expression that represents its name (which cannot start with the <>
symbols nor the dollar sign $). A named selection name can contain up to 255 characters.

Examples

USE NAMED SELECTION ([Customers];“<>ByZipcode”)

USE NAMED SELECTION([Customers];”“<>ByZipcode”)

Processes

In the single-user version, or in Client/Server on the Client side, there are two types of processes:

e Global processes
e Local processes.

Global Processes
You denote a global process by using a string expression that represents its name (which cannot start with the dollar sign $).
A process name can contain up to 255 characters.

Local Processes
You denote a local process if the name of the process is preceded by a dollar ($) sign. The process name can contain up to
255 characters, not including the dollar sign.

Example

$vIProcessID:=New process (“P_ADD_CUSTOMERS”;48%1024;“Add Customers”)

$vIProcessID:=New process (“P_MOUSE_SNIFFER”;16%1024;”$Fol low Mouse Moves™)

Summary of Naming Conventions

The following table summarizes 4D naming conventions.

Type Max. Length Example

Table 31 [Invoices]

Field 31 [Employees]Last Name
Interprocess Variable <>+ 31 <>VINextProcessID
Process Variable 31 vsCurrentName

Local Variable $+ 31 $vlLocalCounter

Form 31 "My Custom Web Input"
Form object 31 "MyButton"
Interprocess Array <>+ 31 <>apTables

Process Array 31 asGender

Local Array $+ 31 $atValues

Method 31 M_ADD_CUSTOMERS
Plug-in Routine 31 WR INSERT TEXT
Interprocess Set <> + 255 "<>Records to be Archived"
Process Set 255 "Current selected records"
Client Set $ + 255 "$Previous Subjects"
Named Selection 255 "Employees A to 2"
Interprocess Named Selection <> + 255 "<>Employees Z to A"
Local Process $ + 255 "$Follow Events"

Global Process 255 "P_INVOICES_MODULE"
Semaphore 255 "mysemaphore"

Resolving Naming Conflicts

If a particular object has the same name as another object of a different type (for example, if a field is named Person and a
variable is also named Person), 4D uses a priority system to identify the object. It is up to you to ensure that you use unique
names for the parts of your database.

4D identifies names used in procedures in the following order:

. Fields

. Commands

. Methods

. Plug-in routines

. Predefined constants

. Variables.

AU~ WN -

For example, 4D has a built-in command called Date. If you named a method Date, 4D would recognize it as the built-in
Date command, and not as your method. This would prevent you from calling your method. If, however, you named a field
“Date”, 4D would try to use your field instead of the Date command.

Control Flow

Regardless of the simplicity or complexity of a method, you will always use one or more of three types of programming
structures. Programming structures control the flow of execution, whether and in what order statements are executed within
a method. There are three types of structures:

e Sequential
e Branching
e Looping

The 4D language contains statements that control each of these structures.
Sequential structure

The sequential structure is a simple, linear structure. A sequence is a series of statements that 4D executes one after the
other, from first to last. For example:

OUTPUT FORM([People];“Listing”)
ALL RECORDS ([People])
DISPLAY SELECTION([Peoplel)

A one-line routine, frequently used for object methods, is the simplest case of a sequential structure. For example:

[People]lLast Name:=Uppercase ([People]Last Name)

Note: The Begin SQL / End SQL keywords can be used to delimit sequential structures to be executed by the SQL engine of
4D. For more information, please refer to the description of these keywords.

Branching structures

A branching structure allows methods to test a condition and take alternative paths, depending on the result. The condition
is a Boolean expression, an expression that evaluates TRUE or FALSE. One branching structure is the If...Else...End if
structure, which directs program flow along one of two paths. The other branching structure is the Case of...Else...End case
structure, which directs program flow to one of many paths.

Looping structures

When writing methods, it is very common to find that you need a sequence of statements to repeat a number of times. To
deal with this need, the language provides three looping structures:

e While...End while
e Repeat...Until
e For...End for

The loops are controlled in two ways: either they loop until a condition is met, or they loop a specified number of times.
Each looping structure can be used in either way, but While loops and Repeat loops are more appropriate for repeating until
a condition is met, and For loops are more appropriate for looping a specified number of times.

Note: 4D allows you to embed programming structures (If/While/For/Case of/Repeat) up to a "depth" of 512 levels.

If...Else...End if

The formal syntax of the If...Else...End if control flow structure is:

[T (Boolean_Expression)
statement (s)

Else
statement s)

End if

Note that the Else part is optional; you can write:
[T (Boolean_Expression)

statement s)
End if

The If...Else...End if structure lets your method choose between two actions, depending on whether a test (a Boolean
expression) is TRUE or FALSE.

When the Boolean expression is TRUE, the statements immediately following the test are executed. If the Boolean
expression is FALSE, the statements following the Else statement are executed. The Else statement is optional; if you omit
Else, execution continues with the first statement (if any) following the End if.

Note that the Boolean expression is always fully evaluated. Consider in particular the following test:
[T (MethodA & MethodB)
End if

The expression is TRUE only if both methods are TRUE. However, even if MethodA returns FALSE, 4D will still evaluate
MethodB, which is a useless waste of time. In this case, it is more interesting to use a structure like:

[T (MethodA)
[T (MethodB

End if
End if

The result is similar and MethodB is evaluated only if necessary.

Example

$Find:=Request (Type a name)

[T (0K=1)

QUERY ([People] ; [Peop|e]LastName=$F i nd)
Else

ALERT (“You did not enter a name.”)
End if

Tip: Branching can be performed without statements to be executed in one case or the other. When developing an algorithm
or a specialized application, nothing prevents you from writing:

[T (Boolean_Expression)
Else

statement (s)
End if

or:

[T (Boolean_Expression)
statement (s)

Else

End if

Case of...Else...End case

The formal syntax of the Case of...Else...End case control flow structure is:

Case of
: (Boolean_Expression)
statement (s)
. (Boolean_Expression)
statement (s)

: (Boolean_Expression)
statement (s)
Else
statement (s)
End case

Note that the Else part is optional; you can write:

Case of
: (Boolean_Expression)
statement (s)
: (Boolean_Expression)
statement (s)

: (Boolean_Expression)
statement(s)
End case

As with the If...Else...End if structure, the Case of...Else...End case structure also lets your method choose between
alternative actions. Unlike the If...Else...End if structure, the Case of...Else...End case structure can test a reasonable
unlimited number of Boolean expressions and take action depending on which one is TRUE.

Each Boolean expression is prefaced by a colon (:). This combination of the colon and the Boolean expression is called a
case. For example, the following line is a case:

:(bVal idate=1)

Only the statements following the first TRUE case (and up to the next case) will be executed. If none of the cases are TRUE,
none of the statements will be executed (if no Else part is included).

You can include an Else statement after the last case. If all of the cases are FALSE, the statements following the Else will be
executed.

Example

This example tests a numeric variable and displays an alert box with a word in it:

Case of
. (VResult=1)
ALERT (“One.)
. (VResult=2)
ALERT (“Two.)
: (vResult=3)
ALERT (“Three. ")
Else

ALERT ("It was not one, two, or three.”)
End case

For comparison, here is the If...Else...End if version of the same method:

[T (vResult=1)
ALERT (“One. ”)
Else

[f (vResult=2)
ALERT (“Two. ”)
Else
[T (vResult=3)
ALERT (“Three. ")
Else
ALERT ("It was not one, two, or three.”)
End if
End if
End if

Remember that with a Case of...Else...End case structure, only the first TRUE case is executed. Even if two or more cases
are TRUE, only the statements following the first TRUE case will be executed.

Consequently, when you want to implement hierarchical tests, you should make sure the condition statements that are lower
in the hierarchical scheme appear first in the test sequence. For example, the test for the presence of condition1 covers the
test for the presence of condition1&condition2 and should therefore be located last in the test sequence. For example, the
following code will never see its last condition detected:

Case of
. (VResult=1)

“((vResult=1) & (vConditioni#2))

End case

In the code above, the presence of the second condition is not detected since the test "vResult=1" branches off the code
before any further testing. For the code to operate properly, you can write it as follows:

Case of
- ((vResult=1) & (vCondition#2))

. (VResult=1)

End case

Also, if you want to implement hierarchical testing, you may consider using hierarchical code.
Tip: Branching can be performed without statements to be executed in one case or another. When developing an algorithm
or a specialized application, nothing prevents you from writing:

Case of
: (Boolean_Expression)
: (Boolean_Expression)

. (Boolean_Expression)
statement (s)
Else
statement (s)
End case

or:

Case of
: (Boolean_Expression)
: (Boolean_Expression)
statement (s)

. (Boolean_Expression)
statement (s)
Else
End case

or:

Case of
Else
statement (s)
End case

While...End while

The formal syntax of the While...End while control flow structure is:

While (Boolean_Expression)
statement (s)
End while

A While...End while loop executes the statements inside the loop as long as the Boolean expression is TRUE. It tests the
Boolean expression at the beginning of the loop and does not enter the loop at all if the expression is FALSE.

It is common to initialize the value tested in the Boolean expression immediately before entering the While...End while
loop. Initializing the value means setting it to something appropriate, usually so that the Boolean expression will be TRUE
and While...End while executes the loop.

The Boolean expression must be set by something inside the loop or else the loop will continue forever. The following loop
continues forever because NeverStop is always TRUE:

NeverStop:=True
While (NeverStop)
End while

If you find yourself in such a situation, where a method is executing uncontrolled, you can use the trace facilities to stop the
loop and track down the problem. For more information about tracing a method, see the chapter Debugging.

Example

CONFIRM(“Add a new record?”)
Whi le (0K=1)

ADD RECORD ([aTable])
End while

In this example, the OK system variable is set by the CONFIRM command before the loop starts. If the user clicks the OK
button in the confirmation dialog box, the OK system variable is set to 1 and the loop starts. Otherwise, the OK system
variable is set to 0 and the loop is skipped. Once the loop starts, the ADD RECORD command keeps the loop going because
it sets the OK system variable to 1 when the user saves the record. When the user cancels (does not save) the last record,
the OK system variable is set to 0 and the loop stops.

Repeat...Until

The formal syntax of the Repeat...Until control flow structure is:

Repeat
statement (s)
Until (Boolean_Expression)

A Repeat...Until loop is similar to a While...End while loop, except that it tests the Boolean expression after the loop rather
than before. Thus, a Repeat...Until loop always executes the loop once, whereas if the Boolean expression is initially False,
a While...End while loop does not execute the loop at all.

The other difference with a Repeat...Until loop is that the loop continues until the Boolean expression is TRUE.
Example

Compare the following example with the example for the While...End while loop. Note that the Boolean expression does not
need to be initialized—there is no CONFIRM command to initialize the OK variable.

Repeat
ADD RECORD ([aTablel)
Unti| (0K=0)

For...End for

The formal syntax of the For...End for control flow structure is:

For (Counter_Variable;Start_Expression;End_Expression{; Increment_Expression})
statement (s)
End for

The For...End for loop is a loop controlled by a counter variable:

e The counter variable Counter_Variable is a numeric variable (Real, Integer, or Long Integer) that the For...End for
loop initializes to the value specified by Start_Expression.

e Each time the loop is executed, the counter variable is incremented by the value specified in the optional value
Increment_Expression. If you do not specify Increment_Expression, the counter variable is incremented by one
(1), which is the default.

e When the counter variable passes the End_Expression value, the loop stops.

Important: The numeric expressions Start_Expression, End_Expression and Increment_Expression are evaluated once
at the beginning of the loop. If these expressions are variables, changing one of these variables within the loop will not
affect the loop.

Tip: However, for special purposes, you can change the value of the counter variable Counter_Variable within the loop;
this will affect the loop.

e Usually Start_Expression is less than End_Expression.

o If Start_Expression and End_Expression are equal, the loop will execute only once.

o If Start_Expression is greater than End_Expression, the loop will not execute at all unless you specify a negative
Increment_Expression. See the examples.

Basic Examples

1. The following example executes 100 iterations:
For (vCounter;1;100)

End for

2. The following example goes through all elements of the array anArray:
For ($vIElem;1;Size of array(anArray))

anArray {$vIElem} :=. .
End for

3. The following example goes through all the characters of the text viSomeText:
For ($viChar;1;Length (vtSomeText))
[f (Character code (vtSomeText<$vIChar2)=Tab)

End if
End for

4. The following example goes through the selected records for the table [aTable]:

FIRST RECORD ([aTable])
For (§vIRecord;1;Records in selection([aTablel))

SEND RECORD ([aTablel)

NEXT RECORD ([aTablel)
End for

Most of the For...End for loops you will write in your databases will look like the ones listed in these examples.
Decrementing variable counter

In some cases, you may want to have a loop whose counter variable is decreasing rather than increasing. To do so, you
must specify Start_Expression greater than End_Expression and a negative Increment_Expression. The following
examples do the same thing as the previous examples, but in reverse order:

5. The following example executes 100 iterations:
For (vCounter;100;1;-1)

End for

6. The following example goes through all elements of the array anArray:
For ($vIElem;Size of array(anArray);1;-1)

anArray {$vIElem} :=. .
End for

7. The following example goes through all the characters of the text viSomeText:
For ($vIChar;Length (vtSomeText) ;1;-1)
[f (Character code (vtSomeText<$vIChar2)=Tab)

End if
End for

8. The following example goes through the selected records for the table [aTable]:

LAST RECORD ([aTable])
For (§vIRecord;Records in selection([aTable]l);1;-1)

SEND RECORD ([aTablel)

PREVIOUS RECORD ([aTable])
End for

Incrementing the counter variable by more than one

If you need to, you can use an Increment_Expression (positive or negative) whose absolute value is greater than one.

9. The following loop addresses only the even elements of the array anArray:
For ($vIElem;2;Size of array(anArray) ;2)

anArray {$vIElem} :=. .
End for

Getting out of a loop by changing the counter variable

In some cases, you may want to execute a loop for a specific number of iterations, but then get out of the loop when

another condition becomes TRUE. To do so, you can test this condition within the loop and if it becomes TRUE, explicitly set

the counter variable to a value that exceeds the end expression.

10. In the following example, a selection of the records is browsed until this is actually done or until the interprocess variable

<>vbWeStop, intially set to FALSE, becomes TRUE. This variable is handled by an ON EVENT CALL project method that
allows you to interrupt the operation:

<vbWeStop:=False
ON EVENT CALL("HANDLE STOP”)

$vINbRecords:=Records in selection([aTable])
FIRST RECORD ([aTable])
For ($vIRecord;1;$vINbRecords)

SEND RECORD ([aTablel)

[T (OvbWeStop)
$vIRecord:=$vINbRecords+1
Else
NEXT RECORD ([aTablel)
End if
End for
ON EVENT CALL("")
[T (>vbWeStop)
ALERT (“"The operation has been interrupted.”)
Else
ALERT (“The operation has been successfully completed.”)
End if

Comparing looping structures

Let's go back to the first For...End for example:
The following example executes 100 iterations:

For (vCounter ;1;100)

End for

It is interesting to see how the While...End while loop and Repeat...Until loop would perform the same action.
Here is the equivalent While...End while loop:

$i =1
Whi le ($i<=100)

$i =§i +1
End while

Here is the equivalent Repeat...Until loop:

$i =1
Repeat

$i =§i +
Unti | ($i=100)

Tip: The For...End for loop is usually faster than the While...End while and Repeat...Until loops, because 4D tests the
condition internally for each cycle of the loop and increments the counter. Therefore, use the For...End for loop whenever
possible.

Optimizing the execution of the For...End for loops

You can use Real, Integer, and Long Integer variables as well as interprocess, process, and local variable counters. For
lengthy repetitive loops, especially in compiled mode, use local Long Integer variables.

11. Here is an example:

C_LONGINT ($v|Counter)
For ($vICounter;1;10000)

End for

Nested For...End for looping structures

You can nest as many control structures as you (reasonably) need. This includes nesting For...End for loops. To avoid
mistakes, make sure to use different counter variables for each looping structure.

Here are two examples:

12. The following example goes through all the elements of a two-dimensional array:

For ($vIElem;1;Size of array(anArray))

For ($vISubElem;1;Size of array(anArray{$vIElem}))

anArray {$vIElem} {$vISubElem} :=. .
End for

End for

13. The following example builds an array of pointers to all the date fields present in the database:

ARRAY POINTER ($apDateFields;0)
$vIElem:=0
For ($viTable;1;Get last table number)
[f(Is table number valid($viTable))
For (§vIField;1;Get last field number (§viTable))
If(Is field number valid($vITable;$vIField))
$vpField:=Field($vITable;$vIField)
I (Type ($vpField->)=Is date)
$vIElem:=$vIElem+1
INSERT IN ARRAY ($apDateFields:$vIElem)
$apDateFields {$vIElem} :=§vpField
End if
End if
End for
End if
End for

Methods

In order to make the commands, operators, and other parts of the language work, you put them in methods. There are
several kinds of methods: Object methods, Form methods, Table methods (Triggers), Project methods, and Database
methods. This section describes features common to all types of methods.

A method is composed of statements; each statement consists of one line in the method. A statement performs an action,
and may be simple or complex. Although a statement is always one line, that one line can be as long as needed (up to
32,000 characters, which is probably enough for most tasks).

For example, the following line is a statement that will add a new record to the [People] table:

ADD REGORD ([Peoplel)

A method also contains tests and loops that control the flow of the execution. For a detailed discussion about the control
flow programming structures, see the section Control Flow.

Note: The maximum size of a method is limited to 2 GB of text or 32 000 lines of command. Beyond these limits, a warning
message appears, indicating that the extra lines will not be displayed.

Types of Methods

There are five types of methods in 4D:

e Object methods: An object method is a property of an object. It is usually a short method associated with an active
form object. Object methods generally “manage” the object while the form is displayed or printed. You do not call an
object method—4D calls it automatically when an event involves the object to which the object method is attached.

e Form methods: A form method is a property of a form. You can use a form method to manage data and objects, but it
is generally simpler and more efficient to use an object method for these purposes. You do not call a form method—4D
calls it automatically when an event involves the form to which the form method is attached.

For more information about Object methods and Form methods, see the 4D Design Reference Manual as well as the chapter
Form Events.

o Table methods (Triggers): A Trigger is a property of a table. You do not call a Trigger. Triggers are automatically
called by the 4D database engine each time that you manipulate the records of a table (Add, Delete and Modify).
Triggers are methods that can prevent “illegal” operations with the records of your database. For example, in an
invoicing system, you can prevent anyone from adding an invoice without specifying the customer to whom the invoice
is billed. Triggers are a very powerful tool to restrict operations on a table, as well as to prevent accidental data loss or
tampering. You can write very simple triggers, and then make them more and more sophisticated.

For detailed information about Triggers, see the section Triggers.

e Project methods: Unlike object methods, form methods, and triggers, which are all associated with a particular object,
form, or table, project methods are available for use throughout your database. Project methods are reusable, and
available for use by any other method. If you need to repeat a task, you do not have to write identical methods for
each case. You can call project methods wherever you need them—from other project methods or from object or form
methods. When you call a project method, it acts as if you had written the method at the location where you called it.
Project methods called from other methods are often referred to as “subroutines.” A project method that returns a
result can also be called a function.

There is one other way to use project methods—associating them with menu commands. When you associate a project
method with a menu command, the method is executed when the menu command is chosen. You can think of the menu
command as calling the project method.

For detailed information about Project methods, see the section Project Methods.

o Database methods: In the same way that object and form methods are called when events occur in a form, there are
methods associated with the database that are called when a working session event occurs. These are the database
methods. For example, each time you open a database, you may want to initialize some variables that will be used

during the whole working session. To do so, you use the On Startup database method, automatically executed by 4D
when you open the database.

For more information about Database Methods, see the chapter Database Methods.
An Example Project Method

All methods are fundamentally the same—they start at the first line and work their way through each statement until they
reach the last line (i.e., they execute sequentially). Here is an example project method:

QUERY ([People])
[T (0K=1)
[T (Records in selection([People])=0)
ADD RECORD ([Peoplel)
End if
End if

Each line in the example is a statement or line of code. Anything that you write using the language is loosely referred to as
code. Code is executed or run; this means that 4D performs the task specified by the code.

We will examine the first line in detail and then move on more quickly:

QUERY ([Peoplel)

The first element in the line, QUERY, is a command. A command is part of the 4D language—it performs a task. In this
case, QUERY displays the Query editor. This is similar to choosing Query from the Records menu in the Design environment.
The second element in the line, specified between parantheses, is an argument to the QUERY command. An argument (or
parameter) is data required by a command in order to complete its task. In this case, [People] is the name of a table. Table
names are always specified inside square brackets ([-:-]). In our example, the People table is an argument to the QUERY
command. A command can accept several parameters.

The third element is a comment at the end of the line. A comment tells you (and anyone else who might read your code)
what is happening in the code. It is indicated by the reverse apostrophe (*). Anything (on the line) following the comment
mark will be ignored when the code is run. A comment can be put on a line by itself, or you can put comments to the right
of the code, as in the example. Use comments generously throughout your code; this makes it easier for you and others to
read and understand the code.

Note: A comment can be up to 32 000 characters long.

The next line of the method checks to see if any records were found:

If (Records in selection([Peoplel)=0)

The If statement is a control-of-flow statement—a statement that controls the step-by-step execution of your method.
The If statement performs a test, and if the statement is true, execution continues with the subsequent lines. Records in
selection is a function—a command that returns a value. Here, Records in selection returns the number of records in the
current selection for the table passed as argument.

Note: Notice that only the first letter of the function name is capitalized. This is the naming convention for 4D functions.

You should already know what the current selection is—it is the group of records you are working on at any given time. If
the number of records is equal to 0 (in other words, if no records were found), then the following line is executed:

ADD REGORD ([People])

The ADD RECORD command displays a form so that the user can add a new record. 4D formats your code automatically;
notice that this line is indented to show you that it is dependent on the control-of-flow statement (If).

End if

The End if statement concludes the If statement’s section of control. Whenever there is a control-of-flow statement, you
need to have a corresponding statement telling the language where the control stops.

Be sure you feel comfortable with the concepts in this section. If they are all new, you may want to review them until they
are clear to you.

Where to go from here?

To learn more about:

e Object methods and Form methods, see the description of the Form event command as well as the 4D Design
Reference manual.

e Triggers, see the section Triggers.
e Project methods, see the section Project Methods.
e Database methods, see the section Database Methods.

Project Methods

Project methods are aptly named. Whereas form and object methods are bound to forms and objects, a project method is
available anywhere; it is not specifically attached to any particular object of the database. A project method can have one of
the following roles, depending on how it is executed and used:

e Menu method

e Subroutine and function
e Process method

e Event catching method
e Error catching method

These terms do not distinguish project methods by what they are, but by what they do.

A menu method is a project method called from a custom menu. It directs the flow of your application. The menu method
takes control—branching where needed, presenting forms, generating reports, and generally managing your database.

The subroutine is a project method that can be thought of as a servant. It performs those tasks that other methods request
it to perform. A function is a subroutine that returns a value to the method that called it.

A process method is a project method that is called when a process is started. The process lasts only as long as the process
method continues to execute. For more information about processes, see the chapter Processes. Note that a menu method
attached to a menu command whose property Start a New Process is selected, is also the process method for the newly
started process.

An event catching method runs in a separate process as the process method for catching events. Usually, you let 4D do
most of the event handling for you. For example, during data entry, 4D detects keystrokes and clicks, then calls the correct
object and form methods so you can respond appropriately to the events from within these methods. In other
circumstances, you may want to handle events directly. For example, if you run a lengthy operation (such as For...End for
loop browsing records), you may want to be able to interrupt the operation by typing Ctrl-Period (Windows) or Cmd-Period
(Macintosh). In this case, you should use an event catching method to do so. For more information, see the description of
the command ON EVENT CALL.

An error catching method is an interrupt-based project method. Each time an error or an exception occurs, it executes
within the process in which it was installed. For more information, see the description of the command ON ERR CALL.

Menu Methods

A menu method is invoked in the Application environment when you select the custom menu command to which it is
attached. You assign the method to the menu command using the Menu editor. The menu executes when the menu
command is chosen. This process is one of the major aspects of customizing a database. By creating custom menus with
menu methods that perform specific actions, you personalize your database. Refer to the 4D Design Reference manual for
more information about the Menu editor.

Custom menu commands can cause one or more activities to take place. For example, a menu command for entering
records might call a method that performs two tasks: displaying the appropriate input form, and calling the ADD RECORD
command until the user cancels the data entry activity.

Automating sequences of activities is a very powerful capability of the programming language. Using custom menus, you can
automate task sequences and thus provide more guidance to users of the database.

Subroutines

When you create a project method, it becomes part of the language of the database in which you create it. You can then call
the project method in the same way that you call 4D’s built-in commands. A project method used in this way is called a
subroutine.

You use subroutines to:

e Reduce repetitive coding
e Clarify your methods
e Facilitate changes to your methods

e Modularize your code

For example, let’s say you have a database of customers. As you customize the database, you find that there are some tasks
that you perform repeatedly, such as finding a customer and modifying his or her record. The code to do this might look like
this:

QUERY BY EXAMPLE ([Customers])
FORM SET INPUT ([Customers];“Data Entry”)

MODIFY RECORD ([Customers])

If you do not use subroutines, you will have to write the code each time you want to modify a customer’s record. If there are
ten places in your custom database where you need to do this, you will have to write the code ten times. If you use
subroutines, you will only have to write it once. This is the first advantage of subroutines—to reduce the amount of code.

If the previously described code was a method called MODIFY CUSTOMER, you would execute it simply by using the name
of the method in another method. For example, to modify a customer’s record and then print the record, you would write
this method:

NODIFY CUSTOMER
PRINT SELECTION([Customers])

This capability simplifies your methods dramatically. In the example, you do not need to know how the MODIFY CUSTOMER
method works, just what it does. This is the second reason for using subroutines—to clarify your methods. In this way, your
methods become extensions to the 4D language.

If you need to change your method of finding customers in this example database, you will need to change only one
method, not ten. This is the next reason to use subroutines—to facilitate changes to your methods.

Using subroutines, you make your code modular. This simply means dividing your code into modules (subroutines), each of
which performs a logical task. Consider the following code from a checking account database:

FIND CLEARED CHECKS
RECONCILE ACCOUNT
PRINT CHECK BOOK REPORT

Even for someone who doesn’t know the database, it is clear what this code does. It is not necessary to examine each
subroutine. Each subroutine might be many lines long and perform some complex operations, but here it is only important
that it performs its task.

We recommend that you divide your code into logical tasks, or modules, whenever possible.
Passing Parameters to Methods

You'll often find that you need to pass data to your methods. This is easily done with parameters.

Parameters (or arguments) are pieces of data that a method needs in order to perform its task. The terms parameter and
argument are used interchangeably throughout this manual. Parameters are also passed to built-in 4D commands. In this
example, the string “Hello” is an argument to the ALERT command:

ALERT (“Hel10")

Parameters are passed to methods in the same way. For example, if a method named DO SOMETHING accepted three
parameters, a call to the method might look like this:

DO SOMETHING(WithThis;AndThat; ThisWay)

The parameters are separated by semicolons ().

In the subroutine (the method that is called), the value of each parameter is automatically copied into sequentially
numbered local variables: $1, $2, $3, and so on. The numbering of the local variables represents the order of the
parameters.

The local variables/parameters are not the actual fields, variables, or expressions passed by the calling method; they only
contain the values that have been passed.

Within the subroutine, you can use the parameters $1, $2... in the same way you would use any other local variable.

Note: However, in the case where you use commands that modify the value of the variable passed as parameter (for
example Find in field), the parameters $1, $2, and so on cannot be used directly. You must first copy them into standard
local variables (for example: $myvar:=$1).

Since they are local variables, they are available only within the subroutine and are cleared at the end of the subroutine. For
this reason, a subroutine cannot change the value of the actual fields or variables passed as parameters at the calling
method level. For example:

DO SOMETHING([People]lLast Name)
ALERT ([People]Last Name)

$1:=Uppercase ($1)
ALERT ($1)

The alert box displayed by DO SOMETHING will read “WILLIAMS” and the alert box displayed by MY METHOD will read
“williams”. The method locally changed the value of the parameter $1, but this does not affect the value of the field
[People]Last Name passed as parameter by the method MY METHOD.

There are two ways to make the method DO SOMETHING change the value of the field:

1. Rather than passing the field to the method, you pass a pointer to it, so you would write:

DO SOMETHING(->[People]lLast Name)
ALERT ([People]Last Name)

$1->:=Uppercase ($1->)
ALERT ($1->)

Here the parameter is not the field, but a pointer to it. Therefore, within the DO SOMETHING method, $1 is no longer the
value of the field but a pointer to the field. The object referenced by $1 ($1-> in the code above) is the actual field.
Consequently, changing the referenced object goes beyond the scope of the subroutine, and the actual field is affected. In
this example, both alert boxes will read “WILLIAMS”.

For more information about Pointers, see the section Pointers.

2. Rather than having the method DO SOMETHING “doing something,” you can rewrite the method so it returns a value.
Thus you would write:

[People]lLast Name:=D0 SOMETHING([People]lLast Name)
ALERT ([People]Last Name)

$0:=$1
ALERT ($0)

This second technique of returning a value by a subroutine is called “using a function.” This is described in the next
paragraphs.

Advanced note: Parameters within the subroutine are accessible through the local variables $1, $2... In addition,
parameters can be optional and can be referred to using the syntax $7{...}. For more information on parameters, see the
description of the command Count parameters.

Functions: Project Methods that return a value

Data can be returned from methods. A method that returns a value is called a function.
4D or 4D Plug-in commands that return a value are also called functions.

For example, the following line is a statement that uses the built-in function, Length, to return the length of a string. The
statement puts the value returned by Length in a variable called MyLength. Here is the statement:

MyLength:=Length (“How did I get here?”)

Any subroutine can return a value. The value to be returned is put into the local variable $0.

For example, the following function, called Uppercase4, returns a string with the first four characters of the string passed to
it in uppercase:

$0:=Uppercase (Substring (§1;1:;4))+Substring ($1;5)

The following is an example that uses the Uppercase4 function:

NewPhrase:=Uppercase4(“This is good.”)

In this example, the variable NewPhrase gets “THIS is good.”

The function result, $0, is a local variable within the subroutine. It can be used as such within the subroutine. For example,
in the previous DO SOMETHING example, $0 was first assigned the value of $1, then used as parameter to the ALERT
command. Within the subroutine, you can use $0 in the same way you would use any other local variable. It is 4D that
returns the value of $0 (as it is when the subroutine ends) to the called method.

Recursive Project Methods

Project methods can call themselves. For example:

e The method A may call the method B which may call A, so A will call B again and so on.
e A method can call itself.

This is called recursion. The 4D language fully supports recursion.

Here is an example. Let's say you have a [Friends and Relatives] table composed of this extremely simplified set of fields:
- [Friends and Relatives]Name
- [Friends and Relatives]ChildrensName

For this example, we assume the values in the fields are unique (there are no two persons with the same name). Given a
name, you want to build the sentence “A friend of mine, John who is the child of Paul who is the child of Jane who is the
child of Robert who is the child of Eleanor, does this for a living!”:

1. You can build the sentence in this way:

$vsName:=Request (“Enter the name:”;”John”)
[(0K=1)
QUERY ([Friends and Relatives];[Friends and Relatives]Name=§vsName)
[f (Records in selection([Friends and Relatives])>0)
$vtTheWholeStory:="A friend of mine, “+$vsName
Repeat
QUERY ([Friends and Relatives];[Friends and Relatives]ChildrensName=$vsName)
$vIQueryResult:=Records in selection([Friends and Relatives])
If ($vIQueryResult>0)
$vtTheWholeStory:=§vtTheWholeStory+” who is the child of “+[Friends and Relatives]Name
$vsName:=[Friends and Relatives]Name
End if
Until ($vIQueryResult=0)
$vtTheWholeStory:=§vtTheWholeStory+”, does this for a living!”
ALERT ($§vtTheWholeStory)
End if
End if

2. You can also build it this way:

$vsName:=Request (“Enter the name:”;”John”)
[(0K=1)
QUERY ([Friends and Relatives];[Friends and Relatives]Name=§vsName)
[T (Records in selection([Friends and Relatives])>0)
ALERT (“A friend of mine, “+Genealogy of(§vsName)+”, does this for a living!”)
End if
End if

with the recursive function Genealogy of listed here:

$0:=$1
QUERY ([Friends and Relatives];[Friends and Relatives]ChildrensName=$1)
[T (Records in selection([Friends and Relatives])>0)
$0:=$0+" who is the child of “+Genealogy of([Friends and Relatives]Name)
End if

Note the Genealogy of method which calls itself.

The first way is an iterative algorithm. The second way is a recursive algorithm.

When implementing code for cases like the previous example, it is important to note that you can always write methods
using iteration or recursion. Typically, recursion provides more concise, readable, and maintainable code, but using it is not
mandatory.

Some typical uses of recursion in 4D are:

e Treating records within tables that relate to each other in the same way as in the example.
e Browsing documents and folders on your disk, using the commands FOLDER LIST and DOCUMENT LIST. A folder may
contain folders and documents, the subfolders can themselves contain folders and documents, and so on.

Important: Recursive calls should always end at some point. In the example, the method Genealogy of stops calling itself
when the query returns no records. Without this condition test, the method would call itself indefinitely; eventually, 4D
would return a “Stack Full” error becuase it would no longer have space to “pile up” the calls (as well as parameters and
local variables used in the method).

» Debugging

Why a Debugger?

Syntax Error Window
#= Debugger

Watch Pane

Call Chain Pane

Custom Watch Pane
Source Code Pane
i Break Points

i Break List

#= Catching Commands
Debugger Shortcuts

Why a Debugger?

When developing and testing your methods, it is important that you find and fix the errors they may contain.

There are several types of errors you can make when using the language: typing errors, syntax or environmental errors,
design or logic errors, and runtime errors.

Typing Errors

Typing errors are detected by the Method editor and displayed in red and a message is displayed in the information area at
the bottom of the method window. The following window shows a typing error:

«* Method: PopulateData

D"/-. v

E For (Fi;1,200%

1
2
3 CREATE RECORD([RESIDENCES])

4 [RESIDENCESRooMms:=(Random%1 5} +1

5 [RESIDENCES]Surface =[RESIDENGES]Rooms*(10+Random%11))

] [RESIDENCES|Price:=[RESIDENC ES]SUrtace(2800+(1 D0*(Random3%E))
7

g

Bl Case of

El B : JRESIDENSES]Rooms ==1)
10 [RESIDENGES| Type:="Studio”
11 B {(RESIDENCES]|Ro0ms==4)
12 [RESIDENGES| Type:="Flat'
13 BE: (RESIDEMCES|Rooms==10)
14 “hetween 5 and 10 rooms, it's aflatar a house.
15 B I iRandom=16000)
16 | [RESIDENCES]Type:="House"
17 ElElse
18 | [RESIDEMNCES] Type:="Flat" e
< >

Syntax error {unknown tablefield name 7).

Note: The comments have been manually inserted for the purpose of this manual. Only the color is modified by 4D at the
location of the error.

Such typing errors usually cause syntax errors (in this case, the name of the table is unknown). The information area
displays a description of the error when you validate the line of code.

When this occurs, fix the typing error and type Enter (on the numeric pad) to validate the fix. For more information about
the Method editor, refer to the 4D Design Reference.

Syntax or Environmental Errors

Some errors can be caught only when you execute the method. The Syntax Error Window is displayed when an error
occurs. For example:

Syntax Error

Error when executing the method "MethodS" at line number 1

0
4D was expecting a text expression.
Upperoase((Aibum=]
@ oetsis Edit [Trace [cContinue | [abort]
Process 10

Mo Description

59 4D was expecting a ket expression,

In this window, the error is that a table name is passed to the Uppercase command, which expects a text expression. To
learn about this window and its button, see the section Syntax Error Window. In the above picture, the "Details" area is
expanded in order to display the last error and its number.

Occasionally, there there may not be enough memory to create an array or a BLOB. When you access a document on disk,
the document may not exist or may already open by another application.

Error when executing the method "MethodS" at line number 1

Folder not found

dosret:=0pen document(o:ADosumentsimytile 1)

@ oetsis & | [Tae | [contnus | [Abot |

Mo Description
120 Folder not found
600 The system cannot find the path specified

These errors do not directly occur because of your code or the way you wrote it; they occur because sometimes “bad things
just happen.” Most of the time, these errors are easy to treat with an error catching method installed using the command
ON ERR CALL.

For more information about this window, refer to the Syntax Error Window section.
Design or Logic Error

These are generally the most difficult type of error to find—use the Debugger to detect them. Note that, other than typing
errors, all the previous error types are to a certain extent covered by the expression “Design or logic error.” For example:

e A syntax error may occur because you try to use a variable that has not yet been initialized.

e An environmental error may occur because you try to open a document whose name is received by a subroutine which
does not get the right value in the parameter. Note that in this example, the piece of code that actually “breaks” may be
different than the code that is actually the origin of the problem.

Design or logic errors also include such situations as:

e A record is not properly updated because, while calling SAVE RECORD, you forgot to first test whether or not the
record was locked.
e A method does not do exactly what you expect, because the presence of an optional parameter is not tested.

Runtime Error

In Application mode, you can obtain errors that you never saw in interpreted mode. Here is an example:

A runtime error occurred at line number: 5
1] When execting the method:
METHOD WITH FAULT

Invalid character reference.,

This message indicates that you are trying to access a character whose position is beyond the length of a string. To quickly
find the origin of the problem, note the name of the method and the line number, reopen the interpreted version of the
structure file, and go to that method at the indicated line.

What To Do When an Error Occurs?

Errors are common. It would be unusual to write a substantial number of lines of code (let’s say several hundred) without generating any errors. Conversely, treating
and/or fixing errors is normal, too!

With its multi-tasking environment, 4D enables you to quickly edit/run methods by simply switching windows. You will discover how quickly you can fix mistakes and
errors when you do not have to rerun the whole thing each time. You will also discover how quickly you can track errors if you use the Debugger.

A common beginner mistake in dealing with error detection is to click Abort in the Syntax Error Window, go back to the Method Editor, and try to figure out what's going
by looking at the code. Do not do that! You will save plenty of time and energy by always using the Debugger.

« If an unexpected syntax error occurs, use the Debugger.
« If an environmental error occurs, use the Debugger.
« If any other type of error occurs, use the Debugger.

In 99% of the cases, the Debugger displays the information you need in order to understand why an error occurred. Once you have this information, you know how to fix
the error.

Tip: A few hours spent in learning and experimenting with the Debugger can save days and weeks in the future when you have to track down errors.

Another reason to use the Debugger is for developing code. Sometimes you may write an algorithm that is more complex than usual. Despite all feelings of
accomplishment, you are not totally sure that your coding is correct, even before trying it. Instead of running it “blind,” use the TRACE command at the beginning of your
code. Then, execute it step by step to control what happens and to check whether your suspicion was correct or not. A purist may dislike this method, but sometimes
pragmatism pays off more quickly. Anyway... use the Debugger.

General Conclusion

Use the Debugger.

Syntax Error Window

The Syntax Error Window is displayed when method execution is halted. Method execution can be halted for one of the
following reasons:

e 4D halts execution because there is an error preventing further method execution.
e The method produces a false assertion (see the ASSERT command).

Here is a Syntax Error window:

Syntax Error

Error when executing the method “List Albums” at line number 2

4D was expecting a numeric expression or a boolean expression ar a ™ or a "

MODIFY §ELECTION(Abums];)

@ oetsis 1 Edit] [T] [cContinue | [Abart]

The upper text area of the Syntax Error Window displays a message describing the error. The lower text area shows the
line that was executing when the error occurred; the area where the error occurred is highlighted.

The Details button can be used to expand the lower part of the window displaying the "stack" of errors related to the
process:

Syntax Error

Error when executing the method “List Albums” at line number 2

4D was expecting a numeric expression or a boolean expression or a " or a ™,

MODIFY SELECTION([Abums];)

@ Detsis
Pracess 9

Mo Description

[trace] [cContinue | [Abart]

59 4D was expecting a numeric expression or a boolean expressian or a ™ or 3",

There are five option buttons at the bottom of the window: Abort, Trace, Continue, Edit and (if the window is expanded)

Copy.

e Abort: The method is halted, and you return to where you were before you started executing the method. If a form or
object method is executing in response to an event, it is stopped and you return to the form. If the method is executing

from within the Application environment, you return to this environment.

e Trace: You enter Trace/Debugger mode, and the Debugger window is displayed. If the current line has been partially

executed, you may have to click the Trace button several times. Once the line finishes, you end up in the Debugger
window.

e Continue: Execution continues. The line with the error may be partially executed, depending on where the error was.
Continue with caution—the error may prevent the remainder of your method from executing properly. Usually, you do
not want to continue. You can click Continue if the error is in a trivial call, such as SET WINDOW TITLE, which does

not prevent executing and testing the rest of your code. You can thus concentrate on more important code, and fix a
minor error later.

Note: If you hold down the Alt (Windows) or Option (Mac OS) key, the Continue button changes to Ignore. Clicking
Ignore means that the window will not be displayed if the same error, triggered by the same method at the same line,

occurs again. This shortcut is useful in the case of an error that occurs repeatedly, for example in a loop. In this case,
everything continues as if the user was clicking on the Continue button each time.

o Edit: All method execution is halted. 4D switches to the Design environment. The method in which the error occurred is

opened in the Method editor, allowing you to correct the error. Use this option when you immediately recognize the

mistake and can fix it without further investigation.
e Copy: This button copies the debugging information into the clipboard. This information describes the internal
environment of the error (number, internal component, etc.). It is formatted as tabbed text. Once you have clicked this

button, you can paste the contents of the clipboard into a text file, a spreadsheet, an e-mail, etc. for analysis purposes.

Debugger

The term Debugger comes from the term bug. A bug in a method is a mistake that you want to eliminate. When an error
has occurred, or when you need to monitor the execution of your methods, you use the debugger. A debugger helps you find
bugs by allowing you to slowly step through your methods and examine method information. This process of stepping
through methods is called tracing.

You can cause the Debugger window to display and then trace the methods in the following ways:

Clicking the Trace button in the Syntax Error Window

e Using the TRACE command

e Clicking the Debug button in the Execute Method window.

Pressing Alt+Shift+Right click (Windows) or Control+Option+Command+Click (Macintosh) while a method is executing,
then selecting the process to trace in the pop-up menu:

G0 o Design Mode
(1} Application process
(2} Internal Timer Process

(3) Internal Bridge Pre

(51 %40 Compiler

e Clicking the Trace button when a process is selected in the Process page of the Runtime Explorer.
e Creating or editing a break point in the Method Editor window, or in the Break and Catch pages of the Runtime
Explorer.

Note: If a password system exists for the database, only the designer and users belonging to the group that has design
access privileges can trace methods.

The Debugger window is displayed here:

4D Debug: Application process:

= — DisplayProducts
R BL-1E200 IR
= = TRACE Command

Expression Value Call Chain

& Line objects & 2B DisplayProducts
[F- = variahles

& @ Conslants

1z Tables & Fields
“%. Gemaphores

[F- E1 Sets

= B Processes

B Mamed Selections

- € Infarmation
[N = RTINS (o

Expression Walue

®[C_LONGINT (firef) -~

SET MENU BAR(2)
SET WINDOW RECT(20,60,820,580;==wRef)

ALL RECORDS ([Froducts]y

CREATE SET{[Froducts]"current?)

ORDER BY{[Products];[Products]kame)

MODIFY SELECTION{Froducts]*
te==x

SET MENU BAR({1)

CLEAR SET("current”)

~
£ >

You can move the Debugger Window and/or resize any of its internal window panes as necessary. Displaying a new debug
window uses the same configuration (size and position of the window, placing of the division lines and contents of the area
that evaluates the expressions) as the last window displayed in the same session.

4D is a multi-tasking environment. If you run several user processes, you can trace them independently. You can have one
debugger window open for each process.

Execution Control Tool Bar Buttons

Nine buttons are located in the Execution Control Tool Bar at the top of the Debugger window:

EE] w|| = |[P5)| =
Button Windows MaeOS
Step Out F7 o Cirl-U H-U

Step Into Process
Step Into Fg ar Cirl-T H-T
Step Dver Fa4 ar Cirl-S H-5
Save Settings FZ

Edit F2 o Cirl-E
Abort and Edit

Abort F& or Cirl-k
Ho Trace F3 o Cirl-R

iy
4% th

No Trace Button
Tracing is halted and normal method execution resumes.

Note: Shift+F5 or Shift+click on the No Trace button resumes execution. It also disables all the subsequent TRACE calls
for the current process.

Abort Button

The method is halted, and you return to where you were before you started executing the method. If you were tracing a
form or object method executing in response to an event, it is stopped and you return to the form. If you were tracing a
method executing from within the Application environment, you return to the this environment.

Abort and Edit Button

The method is halted as if you clicked on Abort. Also, 4D opens a Method Editor window for the method that was executing
at the time the Abort and Edit button was clicked.

Tip: Use this button when you know which changes are required in your code and when these changes are required to
pursue the testing of your methods. After you are finished with the changes, rerun the method.

Edit Button

Clicking the Edit button does the same as Clicking Abort and Edit button, but does not abort the current execution. The
method execution is paused at that point. 4D opens a Method Editor window for the method that was executing at the time
the Edit button was clicked.

Important: You can modify this method; however, these modifications will not appear or execute in the instance of the
method currently being traced in the debugger window. After the method has either aborted or completed successfully, the
modifications will appear on the next execution of this method. In other words, the method must be reloaded so its
modifications will be taken into account.

Tip: Use this button when you know which changes are required in your code and when they do not interfere with the rest
of the code to be executed or traced.

Tip: Object Methods are reloaded for each event. If you are tracing an object method (i.e., in response to a button click),
you do not need to leave the form. You can edit the object method, save the changes, then switch back to the form and
retry. For tracing/changing form methods, you must exit the form and reopen it in order to reload the form method. When
doing extensive debugging of a form, a trick is to put the code (that you are debugging) into a project method that you use
as subroutine from within a form method. In doing so, you can stay in the form while you trace, edit, and retest your form,
because the subroutine is reloaded each time it is called by the form method.

Save Settings Button

Saves the current configuration of the debug window (size and position of the window, placing of the division lines and
contents of the area that evaluates the expressions), so that it will be used by default each time the database is opened.
These parameters are stored in the database’s structure file.

Step Over Button

The current method line (the one indicated by the yellow arrow—called the program counter) is executed, and the
Debugger steps to the next line. The Step Over button does not step into subroutines and functions; it stays at the level of
the method you are currently tracing. If you want to also trace subroutines and functions calls, use the Step Into button.

Step Into Button

On execution of a line that calls another method (subroutine or function), this button causes the Debugger window to display
the method being called and allows you to step through this method. The new method becomes the current (top) method in
the Call Chain Pane of the Debugger window. On execution of a line that does not call another method, this button acts in
the same manner as the Step Over button.

Step Into Process Button

On execution of a line that creates a new process (i.e., calling the New process command), this button opens a new
Debugger window that allows you to trace the process method of the newly created process. On execution of a line that
does not creates a new process, this button acts in the same manner as the Step Over button.

Step Out Button

If you are tracing subroutines and functions, clicking on this button allows you to execute the entire method currently being
traced and to step back to the caller method. The Debugger window is brought back to the previous method in the call
chain. If the current method is the last method in the call chain, the Debugger window is closed.

Execution Control Tool Bar Information

On the right side of the execution control tool bar, the debugger provides the following information:

e The name of the method you are currently tracing (displayed in black)
e The problem caused the appearance of the Debugger window (displayed in red)

Using the example window shown above, the following information is displayed:

e The method DE_DebugDemo is the method being traced.
e The debugger window appeared because it detected a call to the C_DATE command and this command was one of the
commands to be caught.

Here are the possible reasons for the debugger to appear and for the message (displayed in red):

e TRACE Command: A call to TRACE has been issued.

¢ Break Point Reached: A break point has been encountered.

e User Interrupt: You used Alt+Shift+Right click (Windows) or Control+Option+Command+Click (Macintosh), or you
clicked on the Trace button in the Process page of the Design environment Runtime Explorer.

e Caught a call to: Name of the command: A call to a 4D command to be caught is on the point of being performed.

e Stepping into a new process: You used the Step Into Process button and this message is displayed by the Debugger
window opened for the newly created process.

The Debugger Window'’s Panes

The Debugger window consists of the previously described Execution Control Tool Bar and four resizable panes:

e Watch Pane

e Call Chain Pane

e Custom Watch Pane
e Source Code Pane

The first three panes use easy-to-navigate hierarchical lists to display pertinent debugging information. The fourth one,
Source Code Pane, displays the source code of the method being traced. Each pane has its own function to assist you in
your debugging efforts. You can use the mouse to vertically and horizontally resize the debugger window and also each
pane. In addition, the first three panes include a dotted separation line between the two columns they display. Using the
mouse, you can move this dotted line to horizontally resize the columns, at your convenience.

Watch Pane

The Watch pane is displayed in the top left corner of the Debugger window, below the Execution Control Tool Bar. Here is an
example:

Expression WValue
p Line Objects
4 =3 Variables
* =0 Interprocess
4 [= Process

= Document

=1 Error 4]
= FldCelimit 9
=3 0K 0
= RecDelimit 13

» = Local
* =1 Parameters
> = Self Nil
» [i] Current Form Values
> (I Constants
> % Semaphores
© B} Processes
* 11w Tables & Fields
© [Sets

> € Information

© web

The Watch Pane displays useful general information about the system, the 4D environment, and the execution environment.

The Expression column displays the names of the objects or expressions. The Value column displays the current value of
corresponding the object or expression.

Clicking on any value on the right side of the pane allows you to modify the value of the object, if this is permitted for that
object.

The multi-level hierarchical lists are organized by theme at the main level. The themes are:

e Line Objects

e Variables

e Current Form Values
e Constants

e Semaphores

e Processes

e Tables & Fields

e Sets

e Named Selections
e Information

e Web

Depending on the theme, each item may have one or several sublevels. Clicking the list node next to a theme name expands
or collapses the theme. If the theme is expanded, the items in that theme are visible. If the theme has several levels of
information, click the list node next to each item for exploring all the information provided by the theme.

At any point, you can drag and drop themes, theme sublists (if any), and theme items to the Custom Watch Pane.
Line Objects

This theme displays the values of the objects or expressions that are:

e used in the line of code to be executed (the one marked with the program counter—the yellow arrow in the Source
Code Pane), or
e used in the previous line of code.

Since the previous line of code is the one that was just executed before, the Line Objects theme therefore shows the objects
or expressions of the current line before and after that the line was executed. Let's say you execute the following method:

TRACE
a:=1
b:=a+1
c:=a+b

1. You enter the Debugger window with the Source Code Pane program counter set to the line a:=1. At this point the Line
Objects theme displays:

a: Undefined

The a variable is shown because it is used in the line to be executed (but has not yet been initialized).

2. You step one line. The program counter is now set to the line b:=a+1. At this point, the Line Objects theme displays:
a: 1
b: Undefined

The a variable is shown because it is used in the line that was just executed and was assigned the numeric value 1. It is also
shown because it is used in the line to be executed as the expression to be assigned to the variable b. The b variable is
shown because it is used in the line to be executed (but has not yet been initialized).

3. Again, you step one line. The program counter is now set to the line c:=a+b. At this point the Line Objects theme
displays:

c: Undefined
a: 1
b: 2

The c variable is shown because it is used in the line to be executed (but has not yet been initialized). The a and b variables
are shown because there were used in the previous line and are used in the line to be executed. And so on...

The Line Objects theme is a very convenient tool—each time you execute a line, you do not need to enter an expression in
the Custom Watch Pane, just watch the values displayed by the Line Objects theme.

Variables

This theme is composed of the following subthemes:

o Interprocess: Displays the list of the interprocess variables being used at this moment. This list can be empty if you do
not use interprocess variables. The values of the interprocess variables can be modified.

e Process: Displays the list of the process variables being used by the current process. This list is rarely empty. The
values of the process variables can be modified.

e Local: Displays the list of the local variables being used by the method being traced (the one being shown in the source
code pane). This list can be empty if no local variable is used or has not yet been created. The values of the local
variables can be modified.

e Parameters: Displays the list of parameters received by the method. This list can be empty if no parameter were
passed to the method being traced (the one being shown in the source code pane). The values of the parameters can
be modified.

o Self Pointer: Displays a pointer to the current object if you are tracing an Object Method. This value cannot be
modified

Note: You can modify String, Text, Numeric, Date, and Time variables; in other words, you can modify the variables whose
value can be entered with the keyboard.

Arrays, like other variables, appear in the Interprocess, Process, and Locals subthemes, depending on their scope. The
debugger displays each array with an additional hierarchical level; this enables you to obtain or change the values of the
array elements, if any. The debugger displays the first 100 elements, including the element zero. The Value column displays
the size of the array in regard to its name. After you have deployed the array, the first sub-item displays the current selected
element number, then the element zero, then the other elements (up to 100). You can modify String, Text, Numeric, and
Date arrays. You can modify the selected element number, the element zero, and the other elements (up to 100). You
cannot modify the size of the array.

Reminder: At any time, you can drag and drop an item from the Watch Pane to the Custom Watch Pane, including an
individual array element.

Current Form Values

This theme contains the name of each dynamic object included in the current form, as well as the value of its associated
variable:

Expression Value
: ,O Line Objects
» B Variables
4[] Current Form Values
B bCancel 0
B bDelete 0
B bvalidate 0
B FirstName "Patrick”
&1 2
B Lasthame "Smith”
B List Box 3 elements
4[5 List Box Listbox sub ohjects
4 B Columni 3 elements
o8 Columnl 0
8 Columni
o8 Columnl "Henry
B Column1 "Mare
o8 Columnt "Lesly”
Lm Footerl "
oM Headerl 0
B List Boxt 0 elements
[%] List Box1 Listbox sub objects
B TestButton 1
B Variable "
B Variablel

Some objects, such as list box arrays, can be presented as two distinct objects (the variable of the object itself and its data
source).

This list is particularly useful when your forms use dynamic variables intensively: it is easy to identify dynamic variables
through the form object names. You can display the internal name of dynamic variables by selecting Show Types in the
context menu:

Collapse All
Expand All

v Show Types
Shohie\d and Table Mumbers

v ShowIcons
Sorted Tables and Fields
Show Integers in Hexadecimal

v Enable activity monitoring

Dynamic variable names are of the "$form.4B9.42" form:

o Variable? -» Sform.4B9.42 : Text
B vRecNum ->vRechum : Text "2of 2"

Constants

This theme displays predefined constants provided by 4D. like the Constants page of the Explorer window. The expressions
from this theme cannot be modified.

Tables and Fields

This theme lists the tables and fields in the database; it does not list subfields. For each Table item, the Value column
displays the size of the current selection for the current process as well as (if the Table item is expanded) the number of
locked records. For each Field item, the Value column displays the value of the field (except picture, subtable, and BLOB) for
the current record, if any. In this theme, the field values can be modified (there is no undo), but the table information
cannot.

Semaphores
This theme lists the local semaphores currently being set. For each semaphore, the Value column provides the name of the

process that sets the semaphore. This list may be empty if you do not use semaphores. The expressions from this theme
cannot be modified. Global semaphores are not displayed.

Sets

This theme lists the sets defined in the current process (the one you're currently tracing); it also lists the interprocess sets.
For each set, the Value column displays the number of records and the table name. This list may be empty if you do not use
sets. The expressions from this theme cannot be modified.

Processes

This theme lists the processes started since the beginning of the working session. The value column displays the time used
and the current state for each process (i.e., Executing, Paused, and so on). The expressions from this theme cannot be
modified.

Named Selections

This theme lists the process named selections that are defined in the current process (the one you're currently tracing); it
also lists the interprocess named selections. For each named selection, the Value column displays the number of records and
the table name. This list may be empty if you do not use named selections. The expressions from this theme cannot be
modified.

Information

This theme displays general information concerning database operation, such as the current default table (if one exists),
physical, virtual, free and used memory space, query destination, etc. This information allows you to examine database
functioning.

Web

This theme displays information concerning the Web server of the application (only available if the Web server is active):

e Web File To Send: name of Web file waiting to be sent (if any)

e Web Cache Usage: number of pages present in Web cache as well as its use percentage,,

o Web Server Elapsed Time: duration of Web server use in hours:minutes:seconds format

e Web Hits Count: total number of HTTP requests received since Web server launch, as well as the instantaneous number
of requests per second

e Number of active Web processes: number of active Web processes, all Web processes together.

The expressions contained within this theme cannot be modified.

Context Menu

Additional options are provided by the context menu of the Watch pane. To display this menu:

e On Windows, click anywhere in the Watch pane using the right mouse button.
e On Macintosh, Control-Click anywhere in the Watch pane.

The context menu of the Watch pane is shown here:

Exprassion Walue
H ﬁ Line Ohjecis

SR TER |
. & ¢ Show Types

Show Figld and Table Mumbers
H " v show Teons
+ B f Sorted Tables and Fields
HOEEN show Integers in Hexadedimal

€1 Enable activity monitoring
N - Yryars f v

e Collapse All: Collapses all levels of the Watch hierarchical list.

o Expand All: Expand all levels of the Watch hierarchical list.

e Show Types: Displays the object type for each object (when appropriate).

e Show Field and Table Numbers: Displays the number of each table or field of the Fields. If you work with table or
field numbers, or with pointers using the commands such as Table or Field, this option is very useful.

e Show Icons: Displays an icon denoting the object type for each object. You can turn this option off in order to speed
up the display, or just because you prefer to use only the Show Types option.

e Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order, within their respective lists.

e Show Integers in Hexadecimal: Numbers are usually displayed in decimal notation. This option displays them in
hexadecimal notation. Note: To enter a numeric value in hexadecimal, type Ox (zero + "x"), followed by the
hexadecimal digits.

¢ Enable activity monitoring: Activates the monitoring of activity (advanced checking of internal activity of the
application) and displays the information retrieved in the additional themes: Scheduler, Web and Network.

The following is a view of the Watch Pane with all options selected:

Expression

Yalue

0 selected records]

0 selected records

4. B [Comp Platformg] : [10]

+ H [comp Referances] - [11]
= H [Companies] : 2] 1678 selected records
| b 2 [companies]City : [2]3 : Alpha@a) "Santa Fe"
=l [CompaniesiCompany ID : [2]1 : Leng Integer 3

[Companies]Company Name : [2]2 : Alphard0) "ACUMEN, Ine.”
[Companies]Company Frofile : [2]9 : Text
[Companies]Consulting Info : [2]13 : Text
=l [Companies]Country : [2]6 : Alphat20) “usa
- Bl [Companies]Expertise Info : [2]14: Text

"ACUMEN Ing. is the pu.. J

"ACUMEM's expertise is... v|

Call Chain Pane

One method may call other methods, which may call other methods. For this reason, it is very helpful to see the chain of
methods, or Call Chain, during the debugging process. The Call Chain Pane, which provides this useful function, is the top
right pane of the Debugger window. This pane is displayed using a hierarchical list. Here is an example of the Call Chain
Pane:

Call Chain
= hi_BitTestDamo J

Undefined

o

-r[Customers]
-#[Customers]Company
Z

+ DE_Debugbemo

e Each main level item is a name of a method. The top item is the method you are currently tracing, the next main level
item is the name of the caller method (the method that called the method you are currently tracing), the next one is
the caller's caller method, and so on. In the example above, the method M_BitTestDemo is being traced; it has been
called by the method DE_LInitialize, which has been called by DE_DebugDemo.

e Double-clicking the name of a method in the Call Chain pane “transports” you back to the caller method, displaying its
source code in the Source Code Pane. In doing so, you can quickly see “how” the caller method made its call to the
called method. You can examine any stage of the call chain this way.

e Clicking the node next to a Method name expands or collapses the parameter ($1, $2...) and the optional function
result ($0) list for the method. The values appear on the right side of the pane. Clicking on any value on the right side
allows you to change the value of any parameter or function result. In the figure above:

1. M_BitTestDemo has not received any parameter.

2. M_BitTestDemo's $0 is currently undefined, as the method did not assign any value to $0 (because it has not
executed this assignment yet or because the method is a subroutine and not a function).

3. DE_LInitialize has received three parameters from DE_DebugDemo. $1 is a pointer to the table [Customers],
$2 is a pointer to the field [Customers]Company, and $3 is an alphanumeric parameter whose value is "Z".

e After you have deployed the parameter list for a method, you can also drag and drop parameters and function results
to the Custom Watch Pane.

Custom Watch Pane

Directly below the Call Chain Pane is the Custom Watch Pane. This pane is used to evaluate expressions. Any type of
expression can be evaluated, including fields, variables, pointers, calculations, built-in functions, your own functions, and
anything else that returns a value.

You can evaluate any expression that can be shown in text form. This does not cover picture and BLOB fields or variables.
On the other hand, the Debugger uses deployed hierarchical lists to let you display arrays and pointers. To display BLOB
contents, you can use BLOB commands, such as BLOB to text.

In the following example, you can see several of these items: two variables, a field pointer variable and the result of a built-
in function, and a calculation.

Expression Value
s | [n]%4 1 J

— B3 pField -r[Custemers]Company

- B [Customers]Company

H & Recordsin selection([Customers]) 0
‘- B §sSearchCritaria "

Inserting a new expression

You can add an expression to be evaluated in the Custom Watch Pane in the following way:

e Drag and drop an object or expression from the Watch Pane DISTINCT ATTRIBUTE VALUES
e Drag and drop an object or expression from the Call Chain Pane
¢ In the Source Code Pane , click on an expression that can be evaluated

To create a blank expression, double-click somewhere in the empty space of the Custom Watch pane. This adds an
expression ~ New expression and then goes into editing mode so you can edit it. You can enter any 4D formula that returns
a result.

After you have entered the formula, type Enter or Return (or click somewhere else in the pane) to evaluate the expression.

To change the expression, click on it to select it, then click again (or press Enter — numeric key pad) to go into editing
mode.

If you no longer need an expression, click on it to select it, then press Backspace or Delete.

Warning: Be careful when you evaluate a 4D expression modifying the value of one of the System Variables (for instance,
the OK variable) because the execution of the rest of the method may be altered.

Custom Watch Pane Context Menu

To help you enter and edit an expression, the Custom Watch Pane’s context menu gives you access the 4D formula editor. In
fact, the context menu also proposes additional options.

To display this menu, click anywhere in the Custom Watch pane using the right mouse button

MNew expression, ..
Insert Command ’

Delete All

Standard Expressions
Collapse All

Expand all

Show Types

Show Field and Table Mumbers
v Show Icons

Sorted Tables and Fields

Shows Integers in Hexadecimal

Enable activity monitaring

o New Expression: This inserts a new expression and displays the 4D Formula Editor (as shown) so you can edit the
new expression.

Formula Editor

Formula Editor

Choase helow the elements which wil enable you te buld your formula
Master Table ~| | String Operators v | Commands by Themes v

/% Name 1= Assignment
[E Reportalob + Concatenation

* Repetition
[Indexes
" Empty skring

(

Load.] Save..] [Cancel] oK]

For more information about the Formula Editor, see the 4D Design Reference manual.

Insert Command: This hierarchical menu item is a shortcut for inserting a command as a new expression, without
using the Formula Editor.

Delete All: Deletes all the expressions currently present.

Standard Expressions: Recopies the list of objects in the Expression area.

Collapse All/Expand All: Collapses or Expands all the expressions whose evaluation is done by the means of a
hierarchical list (i.e., pointers, arrays,...)

Show Types: Displays the object type for each object (when appropriate).

Show Field and Table Numbers: Displays the number of each table or field of the Fields. If you work with table or
field number or pointers using the commands such as Table or Field, this option is very useful.

Show Icons: Displays an icon denoting the object type for each object. You can turn this option off in order to speed
up the display, or just because you prefer to use only the Show Types option.

Sorted Tables and Fields: Forces the table and fields to be displayed in alphabetical order, within their respective lists.
Show Integers in Hexadecimal: Numbers are displayed using the decimal notation. This option displays them
hexadecimal notation. Note: To enter a numeric value in hexadecimal, type 0x (zero + "x"), followed by the
hexadecimal digits.

Enable activity monitoring: Activates and displays activity monitoring information (see the Watch Pane section).

Source Code Pane

The Source Code Pane shows the source code of the method being traced.
If the method is too long to fit in the text area, you can scroll to view other parts of the method.

Moving the mouse pointer over any expression that can be evaluated (field, variable, pointer, array,...) will cause a Tool Tip
to display the current value of the object or expression and its declared type.

Here is an example of the Source Code Pane:

§sSearchCriteria=§3 -

QUERY (pTahle-= pField-==§sSearchCriteria)

o §LRecordsingelfTable Rointer= S{Customers]L, o .,

& if (§LRecordsinSelection=0)
§0:=New process('DE_Semaphaores";16%1024,"§5emaphores"]
M_BifTestDemo
Else
$0:=-1 "Norecards selected
End if

o o
A tool tip is displayed because the mouse pointer was over the variable pTable which, according to the tool tip, is a pointer to
the table [Customers].

You can also select a portion of the text in the area displaying the code being executed. In this case, when the cursor is
placed above the selected text, a tip displays the selected object’s value:

opewgp2 _________________[EE®

o R e T ’3 = Dlspla_yln_mu:es
Stepping into a new process

Expression Walue Call Chain

£ Line objects 2B Displayinvaices
- = variahles

- @ Conslants

[H-mm Tables & Fields
“%. Gemaphores

[F- E1 Sets

- B Processes

B Mamed Selections
O Infarmation

[N - RPN (v

2[C_LONGINT (fire)

~

Expression Walue

SET MENU BAR(2)
SET WINDOW RECT(20,60,820,580;==wRef)

ALL RECORDS ([Invnice sy
CREATE SET{[Invoices],"current')

ORDER BY{[Invoices]{|

MODIFY SELECTION!
te==2

SET MENU BAR({1)

CLEAR SET("current”)

[Invoices]ID_Invoice Alpha(ij=""

< >

When you click on a variable name or field, it is automatically selected.

Tip: It is possible to copy any selected expression (that can be evaluated) from the Source Code Pane to the Custom
Watch Pane. You can use one of the following ways:

e by simply dragging and dropping (click on the selected text, drag it and drop it in the evaluation area).
e by using the Ctrl+D (Windows) or Command+D (Mac OS) key combinations.

Program Counter

A yellow arrow in the left margin of the Source Code pane (see the figure above) marks the next line that will be executed.
This arrow is called the program counter. The program counter always indicates the line that is about to be executed.
For debugging purposes, you can change the program counter for the method being on top of the call chain (the method
actually being executed). To do so, click and drag the yellow arrow vertically, to the line you want.

WARNING: Use this feature with caution!

Moving the program counter forward does NOT mean that the debugger is rapidly executing the lines you skip. Similarly,

moving the program counter backward does NOT mean that the debugger is reversing the effect of the lines that has already
been executed.

Moving the program counter simply tells the debugger to “pursue tracing or executing from here.” All current settings, fields,
variables, and so on are not affected by the move.

Here is an example of moving the program counter. Let’s say you are debugging the following code:

[T (This condition)

DO SOMETHING
Else

DO SOMETHING ELSE
End if

The program counter is set to the line If (This condition). You step once and you see that the program counter moves to
the line DO SOMETHING ELSE. This is unfortunate, because you wanted to execute the other alternative of the branch. In
this case, and provided that the expression This condition does not perform operations affecting the next steps in your
testing, just move the program counter back to the line DO SOMETHING. You can now continuing tracing the part of the
code in which you are interested.

Setting Break Points in the Debugger

In the debugging process, you may need to skip the tracing of some parts of the code. The debugger offers you several
ways to execute code up to a certain point:

e While stepping, you can click on the Step Over button instead of Step Into button. This is useful when you do not
want to enter into possible subroutines or functions called in the program counter line.

o If you mistakenly entered into a subroutine, you can execute it and directly go back to the caller method by clicking on
the Step Out button.

e If you have a TRACE call placed at some point, you can click the No Trace button, which resumes the execution up to
that call.

Now, let’s say you are executing the following code, with the program counter set to the line ALL RECORDS([ThisTable]):

ALL RECORDS ([ThisTable])

$vrResult:=0

For ($§vIRecord;1;Records in selection([ThisTable]))
$vrResult:=This Function([ThisTablel))
NEXT RECORD ([ThisTablel)

End for

[T ($vrResult>=§vrLimitValue)

Your goal is to evaluate the value of $vrResult after the For loop has been completed. Since it takes quite some execution
time to reach this point in your code, you do not want to abort the current execution, then edit the method in order to insert
a TRACE call before the line If ($vrResult....

One solution is to step through the loop, however, if the table [ThisTable] contains several hundreds records, you are going
to spend the entire day for this operation. In this type of situation, the debugger offers you break points. You can insert
break points by clicking in the left margin of the Source Code pane.

For example:
You click in the left margin of the Source Code pane at the level of the line If ($vrResult...:

&+ ALL RECORDS([ThisTable]}

FvrResult:=0

ForifvIRecord;1 ;Records in selection[ThisTable]))
FvrResult :=This Fupction([ThizTable 111
NEXT RECORD([ThisTable])

End for

& IF (BerResultr=fwrLimityaluel

This inserts a break point for the line. The break point is indicated by a red bullet. Then click the No Trace button.

This resumes the normal execution up to the line marked with the break point. That line is not executed itself—you are back
to the trace mode. In this example, the whole loop has consequently been executed normally. Then, when reaching the
break point, you just need to move the mouse button over $vrResult to evaluate its value at the exit point of the loop.

Setting a break point beyond the program counter and clicking the No Trace button allows you to skip portions of the
method being traced.

Note: You can also set break points directly in 4D's Method Editor. Please refer to the section Break Points.

Once you add a break point, it remains associated with the method. Even if you quit the database and then reopen it later
on, the break point is still there.

There are two ways to eliminate a persistent break point:

o If you are through with it, just remove it by clicking on the red bullet—the break point disappears.
o If you are not totally through with it, you may want to keep the break point. You can temporarily disable the break
point by editing it. This explained in the section Break Points.

Context menu of Source Code Pane
The context menu of the Source Code Pane provides access to several functions that are useful when executing methods in

Trace mode:
% Debug; P_2 EEX

LR - A 2 LR 1 Methad2
Expression Value Call Chain
A | [& g Methodz ‘
Processes
417 Tables & Fiskds Egmoesin Valug
0 Sets
ing v ‘
B[oPamin ant -~
\—k SINREMEANCEE S ackdvibyCods
Fun to Cursor
SetNextStatement rityManager="Johnson™)
Toggle Breatpant yManager="Johnson" AND ActivityDesignation="Tennis");
Eit Breskpoir...
APPEND TO ARRAY (5_CurlLang;"en") //Add language to menn
OUERY [TAcTivitsy]) b
Stepping inta a new process

e Goto Definition: Goes to where the selected object is defined. This command is available for the following objects:
o Project methods: displays method contents in a new window of the Method editor..

Fields: Displays field properties in the inspector of the Structure window,

Tables: Displays table properties in the inspector of the Structure window,

Forms: Displays form in the Form editor,

Variables (local, process, interprocess or $n parameter):displays the line in the current method or among the

compiler methods where the variable is declared.

e Search References (also available in Method editor): Searches all database objects (methods and forms) in which the
current element of the method is referenced. The current element is the one selected or the one where the cursor is
located. This can be the name of a field, variable, command, string, and so on. Search results are displayed in a new
standard results window.

¢ Run to Cursor:Executes statements found between the program counter (yellow arrow) and the selected line of the
method (where the cursor is found).

¢ Set Next Statement:Moves program counter to the selected line without executing this line or any intermediate ones.
The designated line is only run if the user clicks on one of the execution buttons.

¢ Toggle Breakpoint (also available in Method editor): Alternately inserts or removes the breakpoint corresponding to
the selected line. This modifies the breakpoint permanently: for instance, if you remove a breakpoint in the debugger, it
no longer appears in the original method.

o Edit Breakpoint (also available in Method editor):Displays the Breakpoint Properties dialog box. Any changes made
modify the breakpoint permanently .

O o o o

Break Points

As explained in the Source Code Pane section, you set a break point by clicking in the left margin of the Source Code pane
or of the Method Editor window, at the same level as the line of code on which you want to create the break.

Note: Since you can insert, modify or delete break points either in the debugger's Source Code pane or directly in the
Method Editor, there is a dynamic interaction between the Method Editor and the debugger (as well as the Runtime Explorer)
in regards to break points.

In the following figure, a break point has been set, in the debugger, on the line If($vrResult>=$vrLimitValue):

5+i ALL RECORDS([ThisTable)

$vrResult:=0

For(§vIRecord;1 ;Records in selection([ThisTable]))
$vrResult :=This Funetion [ThisTablz 11
NEXT RECORD([ThisTable])

End for

® I (fvrResult>=fvrLimityalue)

If you click again on the red bullet, the break point is deleted.
Editing a Breakpoint

You can access the Breakpoint Properties window by selecting the Edit Breakpoint command in the context menu of the
Source Code Pane or by pressing Alt-click (Windows) or Option-click (Macintosh) in the left margin of the window (or the
Method Editor window).

e If you click on an existing break point, the window is displayed for that break point.
e If you click on a line where no break point was set, the debugger creates one and displays the window for the newly
created break point.

The Breakpoint Properties window is shown here:

Breakpoint Properties

Lacation

Methodz, line: 2

Break when following expression is true

| Check Syrkax
Mumber of times ko skip before breaking
a
[[]EBreakpaint is disabled.
[Cancel] [Ok]

Here are the properties:

Location: This tells you the name of the method and the line number where the break point is set. You cannot change this
information.

Break when following expression is true: You can create conditional break points by entering a 4D formula that returns
True or False. For example, if you want to break at a line only when Records in selection([aTable])=0, enter this formula,
and the break will occur only if there no record selected for the table [aTable], when the debugger encounters the line with
this break point. If you are not sure about the syntax of your formula, click the Check Syntax button.

Number of times to skip before breaking: You can set a break point to a line of code located in a loop structure (While,
Repeat, or For) or located in subroutine or function called from within a loop. For example, you know that the “problem” you
are tracking does not occur before at least the 200th iteration of the loop. Enter 200, and the break point will activate at the
201st iteration.

Breakpoint is disabled: If you currently do not need a break point, but you may need it later, you can temporarily disable
the break point by editing it. A disabled break point appears as a dash (-) instead of a bullet () in the source code pane of

the debugger window, in the Method Editor and in the Break page of the Runtime Explorer.

You create and edit break point from within the Debugger or the Method Editor window. You can also edit existing break
points using the Break page of the Runtime Explorer. For more information, see the section Break List.

Break List

The Break List is a page of the Runtime Explorer that enables you to manage the break points created in the Debugger
Window or in the Method Editor.

To open the Break List page:

1. Choose Runtime Explorer from the Run menu.

The Runtime Explorer can be displayed in a floating palette which always remains displayed in the front. To do this, hold
down the Shift key while selecting Runtime Explorer from the Run menu. The Runtime Explorer is then available in all the
4D environments. For more information, please refer to the Design Reference manual.

Test Application Chrl+I

Method... Ctrl+R

v Runtime Explarer...

Skart Web Server

Start SOL Server

Restart Interpreted Cerl+alk+I
Restart Compiled Ckrl+3hift+1

The Runtime Explorer window appears.
2. Click on the Break button to display the Break List:

4D Runtime Explorer, @@

Pod) Break Location Condition
T

Wistch ® ReporiBuilder, line: 1

= ® ReporBuilder, line: 3

* ReportBuilder, line: 4
Process * Sel_Duplicate, line: 4

* Sel_Duplicate, line: 14

. * ReportBuilder, line: 21

Break * ReportBuilder, line: 31

0 * M_Residences, line: §

Cateh

The Break List is composed of two columns:

e The left column displays the Enable/Disable status of the break point, followed by the name of the method and the line
number where the break point has been set (using the Debugger window or the Method Editor).
e The right column displays the condition associated with the break point, if any.

Using this window, you can:

e Set a condition for a break point,
e Enable, disable or delete each break point,

e Open a Method Editor window displaying the method in which a break point is defined, by double-clicking on the break
point.

However, you cannot add a new break point from this window. Break points can only be created from within the Debugger
window or the Method Editor.

Setting a Condition for a Break Point

To set a condifition for a break point, proceed as follows:

1. Click on the entry in the right column
2. Enter a 4D formula (expression or command call or project method) that returns a Boolean value.

Note: To remove a condition, delete its formula.

Disabling/Enabling a Break Point

To disable or enable a break point:

1. Select the break point by clicking on it or by using the arrows to navigate through the list (if the current selected entry
is not already in edit mode).
2. Choose Enable/Disable from the context menu.

Shortcut: Each entry in the list may be disabled/enabled by clicking directly on the bullet (¢). The bullet changes to a dash
(=) when disabled.

Deleting a Break Point

To delete a break point:

1. Select the break point by clicking on it or by using the arrows to navigate through the list (if the current selected entry
is not already in edit mode).
2. Press the Delete or Backspace key or click on the Delete button below the list.

Note: To delete all the break points, click on the Delete All button (second button below the list) or choose Delete All in the
context menu.

Catching Commands

The Catching Commands is a page of the Runtime Explorer that enables you to add additional breaks to your code by
catching calls to 4D commands.

Catching a command enables you to start tracing the execution of any process as soon as a command is called by that
process. Unlike a break point, which is located in a particular project method (and therefore triggers a trace exception only
when it is reached), the scope of catching a command includes all the processes that execute 4D code and call that
command.

Catching a command is a convenient way to trace large portions of code without setting break points at arbitrary locations.
For example, if a record that should not be deleted is deleted after you have executed one or several processes, you can try
to reduce the field of your investigation by catching commands such as DELETE RECORD and DELETE SELECTION. Each
time these commands are called, you can check if the record in question has been deleted, and thus isolate the faulty part of
the code.

With some experience, you can combine the use of Break points and command catching.
To open the Caught Commands page:

1. Choose Runtime Explorer from the Run menu.

The Runtime Explorer can be displayed in a floating palette. In this case, the floating palette always remains displayed in the
front. To do this, hold down the Shift key while selecting Runtime Explorer from the Tools menu. For more information,
please refer to the Design Reference manual.

Test Application Chrl+I

Runtime Exploret.. .

Start Web Server

Stark SQL Server

Restart Interpreted Chrl+alk+I

The Runtime Explorer window appears.
2. Click on the Catch button to display the Caught Commands List:

4D Runtime Explorer E]@

,‘ﬁ‘; Caught Commands Condition

watch ® EDIT FORMULA

B

Process

Break

-

Catch

& =5

This page lists the commands to be caught during execution. It is composed of two columns:

e The left column displays the Enable/Disable status of the caught command, followed by the name of the command.
e The right column displays the condition associated with the caught command, if any.

Adding a New Command to be Caught
To add a new command:

1. Click on the Add New Catch button (in the shape of a +) located below the list. A new entry is added to the list with the
ALERT command as default.

D 1

.‘}‘:‘; Caught Commands Condition

watch .
® EDIT FORMULA

Process

Break

-
Catch

+ =3

You can then click on label ALERT and enter the name of the command you want to catch. Once you have finished, hit Enter
or Return to validate your choice.

Editing the Name of a Caught Command

To edit the name of a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list (if the current selected entry is not
already in edit mode).

2. To toggle an entry between edit mode and select mode, press Enter or Return.

. Enter or modify the name of the command.

4. To validate your changes, press Enter or Return.

w

Disabling/Enabling a Caught Command

To disable or enable a caught command:

1. Click on the bullet () placed in front of the command label.
This allows you to alternately activate and/or disable the break point. The bullet's color indicates its status:
o red = activated,
o orange = disabled.

Note: Disabling a caught command has almost the same effect as deleting it. During execution, the debugger spends almost
no time on the entry. The advantage of disabling an entry is that you do not have to recreate it when you need it again.

Deleting a Caught Command

To delete a caught command:

1. Select the entry by clicking it or by using the arrow keys to navigate through the list (if the current selected entry is not
already in edit mode).

2. Press the Backspace or Delete key or click on Delete button located beneath the list.

3. To delete all the caught commands, click on the Delete All button.

Setting a Condition for Catching a Command

To set a condition for catching a command:

1. Click on the entry in the right column.
An input cursor appears.
2. Enter a 4D formula (expression, command call or project method) that returns a Boolean value.

Note: To remove a condition, delete its formula.

Adding conditions allows you to stop execution when the command is invoked only if the condition is met. For example, if
you associate the condition "Records in selection([Emp]>10)" with the break point on the DELETE SELECTION command,
the code will not be stopped during execution of the DELETE SELECTION command if the current selection of the [Emp]
table only contains 9 records (or less).

Adding conditions to caught commands slows the execution, because the condition has to be evaluated each time an

exception is met. On the other hand, adding conditions accelerates the debugging process, because 4D automatically skips
occurrences that do not match the conditions.

Debugger Shortcuts

This section lists all the shortcuts available in the debugger window.
Execution Control Tool Bar

The following figure shows the shortcuts for the nine buttons located in the top left corner of the debugger window:

o oEg EE SR | T oeE] o
L Eulton Windows Macld

Step ODut Fv? or Ctel-l H-U
Step Inte Process
Step Into F8 or Girl-T H-T
Step Over Fa or Gtrl-5 H-s
Save Settings FZ
Edit F2 ok Ctrl-E HE
Abort and Edit
Abort F& or Ctrl-k HE
Mo Trace FS or Ctrl-R "R

Shift+F5 or Shift+click on the No Trace button resumes execution. Also, they disable all the next TRACE calls for the current
process.

Watch Pane

e Right mouse button click (Windows) or Control-Click (Macintosh) in the Watch Pane pulls down the Watch context
menu.
e Double-click on an item of the Watch Pane copies the item to the Custom Watch Pane.

Call Chain Pane

e Double-Click on a method name in the Call Chain Pane displays the method in the Custom Watch Pane at the line
corresponding to the call in the call chain.

Custom Watch Pane

e Right mouse button click (Windows) or Control-Click (Macintosh) in the Custom Watch Pane pulls down the Custom
Watch context menu.
e Double-Click in the Custom Watch Pane creates a new watch.

Source Code Pane

e Click in the left margin sets (persistent) or removes break points.

¢ Alt-Shift-Click (Windows) or Option-Shift Click (Macintosh) sets a temporary break point.

e Alt-Click (Windows) or Option-Click displays the Edit Break window for a new or existing break point.

o A selected expression or object can be copied to the Custom Watch Pane by simple drag and drop.

e Ctrl+D (Windows) or Command+D (Mac OS) key combinations copy the selected text to the Custom Watch Pane.

All Panes

e Ctrl + * (Windows) or Command + * (Mac OS) forces the updating of the Watch Pane.

e When no item is selected in any pane, typing Enter steps by one line.

e When an item value is selected, use the arrows keys to navigate through the list.

e When an item is being edited, use the arrow keys to move the cursor; use Ctrl-A/X/C/V (Windows) or Command-
A/X/C/V (Macintosh) as shortcuts to the Select All/Cut/Copy/Paste menu commands of the Edit menu.

+ 4D Environment

: Application file
. Application type
s Application version
s BUILD APPLICATION
.» Compact data file
s COMPONENT LIST
: CREATE DATA FILE
: Data file
» Get 4D file
. Get 4D folder
: Get database localization
: Get database measures
.+ Get database parameter
.+ Get last update log path
s GET SERIAL INFORMATION
: Get table fragmentation
: Is compiled mode
: Is data file locked
s NOTIFY RESOURCES FOLDER MODIFICATION
: OPEN ADMINISTRATION WINDOW
: OPEN DATA FILE
s OPEN DATABASE
s OPEN SECURITY CENTER
s OPEN SETTINGS WINDOW
s PLUGIN LIST
s QUIT 4D
s RESTART 4D
s SET DATABASE LOCALIZATION
: SET DATABASE PARAMETER
: SET UPDATE FOLDER
s Structure file
s VERIFY CURRENT DATA FILE
s VERIFY DATA FILE
: Version type

= Application file

Application file -> Function result

Parameter Type Description
Function result String b= | Long name of the 4D executable file or application
Description

The Application file command returns the long name of the 4D executable file or application you are running.
On Windows

If, for example, you are running 4D located at ¥PROGRAMS¥4D on the volume E, the command returns
E:¥PROGRAMS¥4D¥4D.EXE.

On Macintosh

If, for example, you are running 4D in the Programs folder on the disk Macintosh HD, the command returns Macintosh
HD:Programs:4D.app.

Example

At startup on Windows, you need to check if a DLL Library is correctly located at the same level as the 4D executable file. In
the On Startup database method of your application you can write:

[T(0n Windows & (Application type#4D Server))
[f (Test path name(Long name to path name(Application file)+ "XRAYCAPT.DLL”)#Is a document)

End if
End if

Note: The project methods On Windows and Long name to path name are listed in the System Documents section.

. Application type

Application type -> Function result

Parameter Type Description

Function result Longint = | Numeric value denoting the type of the application

Description

The Application type command returns a numeric value that denotes the type of 4D environment that you are running. 4D
provides the following predefined constants:

Constant Type Value
4D Desktop Longint 3
4D Local mode Longint 0
4D Remote mode Longint 4
4D Server Longint 5
4D Volume desktop Longint 1

Note: 4D Desktop incorporates certain deployment offers, such as, for example,"4D SQL Desktop".

Example

Somewhere in your code, other than in the On Server Startup Database Method, you need to check if you are running
4D Server. You can write:

[T (Application type=4D Server)

End if

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/On-Server-Startup-Database-Method.301-3047536.en.html

. Application version

Application version {(buildNum {; *})} -> Function result

Parameter Type Description

buildNum Longint = Build number

& Operator = Long version number if passed, otherwise Short version number
Function result String = Version number encoded string

Description

The Application version command returns an encoded string value that expresses the version number of the 4D
environment you are running.

- If you do not pass the optional * parameter, a 4-character string is returned, formatted as follows:
Characters Description

1-2 Version humber
3 "R" number
4 Revision number

- If you pass the optional * parameter, an 8-character string is returned, formatted as follows:
Characters Description

1 "F" denotes a final version
"B" denotes a beta version

Other characters denote an 4D internal version

2-3-4 Internal 4D compilation number
5-6 Version number

7 "R" number

8 Revision number

Compatibility note (4D v14)

Version numbering has been changed beginning with version 14 of 4D:

e the "R" number is the number of the "R" version of 4D, for example 3 for version R3 (contains 0 for a bug fix version),
o the revision humber is the number of the bug fix version of 4D (contains 0 for an "R" version).

In previous versions of 4D, the number of the "R" version was the update number; it designated the revision and the
revision number itself was always 0.

Examples for a short version number:
Versions Value returned

4D v13.1 "1310" Previous numbering system

4D v14 R2 "1420" Release R2

4D v14 R3 "1430" Release R3

4D vi14.1 "1401" First bug fix version of 4D v14
4D v14.2 "1402" Second bug fix version of 4D v14

Examples for a long version number:
Versions Value returned
4D v12.5 beta "B0011250"
4D v14 R2 beta "B0011420"
4D v14 R3 final "F0011430"
4D v14.1 beta "B0011401"
The Application version command can return additional information in the optional buildNum parameter: the build number

of the current version of the 4D application. This is an internal compilation number that can be used for versioning or when
contacting the 4D Technical Services department.

Note: In the case of applications that are compiled and merged with 4D Volume License, the build number returned is not
significant. In this context, version information is managed by the developer.

Example 1

This example displays the 4D environment version number:
$vsdDversion:=Application version

ALERT ("You are using the version “+String (Num(Substring($vs4Dversion;1;2)))+". "+
$vsdDversions32+”. “+$vsdDversion<4>)

Example 2

This example tests to verify that you are using a final version:

If (Substring (Application version(x);1;1)#"F")

ALERT (“Please make sure you are using a Final Production version of 4D with this database!”)
QUIT 4D

End if

Example 3

You want to use the application's short version value returned by the command to display the 4D application release name.
You can write:

C_LONGINT ($Lon_bui Id)
C_TEXT (§Txt_info;$Txt_major;$Txt_minor;$Txt_release;$Txt_version)

$Txt_version:=Application version($Lon_build)

$Txt_major:=§Txt_version[[1]1]1+§Txt_version[[2]]
$Txt_release:=$Txt_version[[3]]
$Txt_minor :=§Txt_version[[4]]

$Txt_info:="4D v”+§Txt_major
If($Txt_release="0")
$Txt_info:=§Txt_info+Choose ($Txt_minor#”0”;”. “+$Txt_minor; ")

Else
$Txt_info:=$Txt_infot+” R"+$§Txt_release
End if

.2 BUILD APPLICATION

BUILD APPLICATION {(projectName)}

Parameter Type Description
projectName String = Full access path of the project to use

Description

The BUILD APPLICATION command launches the application generation process. It takes into account parameters set in
the current application project or the application project set in the projectName parameter.

An application project is an XML file that contains all the parameters used to generate an application. Most parameters can
be seen in the Build Application... dialog box (for more information, refer to the Application builder section of the 4D
Design Reference manual).

By default, 4D creates an application project named “buildapp.xml” (default) for each database and places it in the BuildApp
subfolder in the database Preferences folder.

If the database has not yet been compiled or if the compiled code is outdated, the command will first launch the compiler
process. In this case, the compiler window does not appear (unless an error occurs), only a progress bar is displayed.
You can hide this progress bar using the MESSAGES OFF command.

If you do not pass the optional projectName parameter, the command displays a standard open file dialog box, so that you
can designate a project file. When the dialog box has been validated, the system variable Document contains the full
pathname of the open project file.

If you pass the access path and name of an XML file for a valid application project (UTF-8 encoding and “.xml” extension),
the command will use the parameters defined in the file. For more information on the structure and the keys that can be
used in the XML file of an application project, refer to the 4D XML Keys BuildApplication manual.

Example

This example builds two applications in a single method:

BUILD APPLICATION (“c:¥¥folder¥¥projects¥¥myprojectl. xml”)
[T (0K=1)

BUILD APPLICATION (“c:¥¥folder¥¥projects¥¥myproject2. xml™)
End if

System Variables or Sets

The system variable OK is set to 1 if the command has been correctly executed. Otherwise, it is set to 0. The system
variable Document contains the full pathname of the open project file.

Error Handling

If the command fails, an error is generated that you can intercept using the ON ERR CALL command.

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Application-builder.300-3049001.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/4D-XML-Keys-BuildApplication.100-3130124.en.html

.+ Compact data file

Compact data file (structurePath ; dataPath {; archiveFolder {; option {; method}}}) -> Function result

Parameter Type Description

structurePath Text = Pathname of structure file

dataPath Text = Pathname of data file to be compacted

archiveFolder Text =+ Pathname of folder where original data file will be put
option Longint = Compacting options

method Text = Name of 4D callback method

Function result Text 2 Complete pathname of folder containing original data file

Description

The Compact data file command compacts the data file designated by the dataPath parameter associated with the
structurePath structure file. For more information about compacting, refer to the Design Reference manual.

To ensure the continuity of the database operation, the new compacted data file automatically replaces the original file. For
security, the original file is not modified and is moved into a special folder named “Replaced files (compacting) YYYY-MM-DD
HH-MM-SS” where YYYY-MM-DD HH-MM-SS represents the date and time of the backup. For example: “Replaced files
(compacting) 2007-09-27 15-20-35".

The command returns the complete pathname of the folder actually created to store the original data file. This command can
only be executed from 4D (local mode) or 4D Server (stored procedure). The data file to be compacted must correspond to
the structure file designated by structurePath. In addition, the data file must not be open when the command is executed;
otherwise an error is generated.

If an error occurs during the compacting process, the original files are kept in their initial location. If an index file (.4DIndx
file) is associated with the data file, it is also compacted. As with the data file, the original file is saved and the new
compacted version replaces the previous one.

e In the structurePath parameter, pass the complete pathname of the structure file associated with the data file that you
want to compact. This information is needed for the compacting procedure. The pathname must be expressed in the
syntax of the operating system. You can also pass an empty string; in this case, the standard Open file dialog box
appears so that you can designate the structure file to be used.

e In the dataPath parameter, you can pass an empty string, a file name or a complete pathname, expressed in the syntax
of the operating system. If you pass an empty string, the standard Open file dialog box appears so that the user can
designate the data file to be compacted. This file must correspond to the structure file defined in the structurePath
parameter. If you only pass the name of the data file, 4D will look for it at the same level as the structure file.

e The optional archiveFolder parameter can be used to specify the location of the “Replaced files (compacting) DateTime”
folder intended to receive the original versions of the data files as well as any index files.

The command returns the complete pathname of the folder actually created.

- If you omit this parameter, the original files are automatically put in a “Replaced files (compacting) DateTime” folder
that is created next to the structure file.

- If you pass an empty string, a standard Open folder dialog box will appear so that the user can specify the location of
the folder to be created.

- If you pass a pathname (expressed in the syntax of the operating system), the command will create a “Replaced files
(compacting) DateTime"” folder at this location.

e The optional options parameter is used to set various compacting options. To do so, use the following constants, found
in the “Data File Maintenance” theme. You can pass several options by combining them:

Constant Type Value Comment

Compact Force the address table of the records to be rewritten (slows down compacting).
address Longint 131072 Note that in this case, record numbers are rewritten. If you only pass this option,
table 4D automatically enables the ‘Update records’ option.

When this option is passed, compacting will be asynchronous and you will need to

manage the results using the callback method (see below). 4D will not display the
Create Longint 32768 progress bar (it is possible to do so using the callback method). The OK system
process variable is set to 1 if the process has been launched correctly and 0 in all other

cases. When this option is not passed, the OK variable is set to 1 if the compacting

takes place correctly and 0 otherwise.

Do not
. Generally, this command creates a log file in XML format (refer to the end of the
create log Longint 16384 L . . . i .
file command description). With this option, no log file will be created.
Timestam When this option is passed, the name of the log file generated will contain the date
i P . and time of its creation; as a result, it will not replace any log file already
log file Longint 262144 . L . !
name generated previously. By default, if this option is not passed, log file names are not
timestamped and each new file generated replaces the previous one.
Update . Force all records to be rewritten according to current definition of the fields in the
Longint 65536
records structure

e The method parameter is used to set a callback method which will be called regularly during the compacting if the
Create process option has been passed. Otherwise, the callback method is never called. For more information about this
method, please refer to the description of the VERIFY DATA FILE command.

If the callback method does not exist in the database, an error is generated and the system variable OK is set to 0.

By default, the Compact data file command creates a log file in XML format (if you have not passed the Do not create log
file option, see the options parameter). This file is placed in the Logs folder of the current database and its name is also
based on the structure file of the current database. For example, for a structure file named “myDB.4db,” the log file will be
named “myDB_Compact_Log.xml.”

If you have passed the Timestamp log file name option, the name of the log file includes the date and time of its creation in
the form "YYYY-MM-DD HH-MM-SS", which gives us, for example: “myDB_Compact_Log_2015-09-27 15-20-35.xml". This
means that each new log file does not replace the previous one, but it might require subsequent manual action to remove
unnecessary files.

Regardless of the option selected, as soon as a log file is generated, its path is returned in the Document system variable
after execution of the command.

Example

The following example (Windows) carries out the compacting of a data file:

$structFile:=Structure file
$dataFile:="C:¥Databases¥Invoices¥January¥Invoices. 4dd”
$origFile:="C:¥Databases¥Invoices¥Archives¥January¥”
$archFolder :=Compact data file(§structFile;$dataFile;$origFile)

System variables and sets

If the compacting operation is carried out correctly, the OK system variable is set to 1; otherwise, it is set to 0. If a log file
was generated, its complete pathname is returned in the Document system variable.

. COMPONENT LIST

COMPONENT LIST (componentsArray)

Parameter Type Description
componentsArray Text array = Names of the components

Description

The COMPONENT LIST command sizes and fills the componentsArray array with the names of the components loaded by
the 4D application for the current host database.

When a database is opened, 4D loads the valid components found in the Components folder(s):

o the Components folder that is next to the structure file (if any),
o the Components folder that is next to the 4D application executable file.

Reminder: If the same component is placed in both locations, 4D will only load the one located next to the structure.

This command can be called from the host database or from a component. If the database does not use any components,
the componentsArray array is returned empty.

The names of the components are the names of the structure files of the matrix databases (.4db, .4dc or .4dbase). This
command can be used for setting up architectures and modular interfaces that offer additional functionalities according to
the presence of components.

For more information about 4D components, please refer to the Design Reference manual.

.+ CREATE DATA FILE

CREATE DATA FILE (accessPath)

Parameter Type Description

accessPath String = Name or complete access path of the data file to create
Description

The CREATE DATA FILE command creates a new data file to disk and replaces the data file opened by the 4D application
on-the-fly.

The general functioning of this command is identical to that of the OPEN DATA FILE command; the only difference is that
the new data file set by the accessPath parameter is created just after the structure is re-opened.
Before launching the operation, the command verifies that the specified access path does not correspond to an existing file.

4D Server: Beginning with 4D v13, this command can be executed with 4D Server. In this context, it performs an internal
call to QUIT 4D on the server (which causes a dialog box to appear on each remote machine, indicating that the server is in
the process of quitting) before creating the designated file.

= Data file

Data file {(segment)} -> Function result

Parameter Type Description

segment Longint = Obsolete, do not use

Function result String 2 Long name of the data file for the database
Description

The Data file command returns the long name of the data file for the database with which you are currently working.

Starting with version 11 of 4D, data segments are no longer supported. The segment parameter is now ignored and must no
longer be used.

On Windows

If, for example, you are working with the database MyCDs located at ¥DOCS¥MyCDs on the volume G, a call to Data file
returns G:¥DOCS¥MyCDs¥MyCDs.4DD (provided that you accepted the default location and name proposed by 4D when you
created the database).

On Macintosh

If, for example, you are working with the database located in the folder Documents:MyCDsf: on the disk Macintosh HD, a
call to Data file returns Macintosh HD:Documents:MyCDsf:MyCDs.data (provided that you accepted the default location and
name proposed by 4D when you created the database).

WARNING: If you call this command from 4D in remote mode, only the name of the data file is returned, not the long
name.

.+ Get 4D file

Get 4D file (file {; *}) -> Function result

Parameter Type

file Longint
& Operator
Function result String

Description

Description
= File type
= Return file path of host database
D Pathname to 4D file

The Get 4D file command returns the pathname to the 4D environment file specified by the file parameter. The path is

returned using the system syntax.

This command allows you to get the actual pathname of specific files, whose name or location can depend on database
context. It also helps you to write generic code which is independent from the 4D version or the OS.

In file, pass a value to specify the file for which you want to get the full pathname. You can use one of the following
constants, located in the "4D Environment" theme:

Constant Type Value
Backup .
Longint 1
configuration file g
Last backup file Longint 2
User settings file for
g Longint 4
data
User structure
. i Longint 3
settings file

Comment

Backup.xml file, stored in Preferences/Backup folder next to database structure
file.

Last backup file, named <databaseName>[bkpNum].4BK, stored at a custom
location.

settings.4DSettings file for current data file, stored in Preferences folder next to
the data file.

settings.4DSettings file for all data files, stored in Preferences folder next to
database structure file if enabled.

When the command is called from a component, pass the optional * parameter to get the file path of the host database. In
this case, if you omit the * parameter, an empty string is always returned.

Regarding User settings file for data and User structure settings file, a path is returned only if the Enable User Settings in
External File security option has been checked in the "Database Settings" dialog box (see Enabling User Settings mode).

Example

You want to get the path of the last backup file:

C_TEXT ($path)
$path:=Get 4D file(Last backup file)

= Get 4D folder

Get 4D folder {(folder {; *})} -> Function result

Parameter Type Description

folder Longint = Folder type (if omitted = active 4D folder)
& Operator = Return folder of host database

Function result String =] Pathname to 4D Folder

Description

The Get 4D folder command returns the pathname to the active 4D folder of the current application, or to the 4D
environment folder specified by the folder parameter, if passed. This command allows you to get the actual pathname of the
folders used by the 4D application. By using this command, you ensure that your code will work on any platform running any
localized system.

In folder, you can pass one of the following constants, which are located in the "4D Environment" theme:

Constant Type Value
4D Client database folder Longint 3
Active 4D Folder Longint 0
Current resources folder Longint 6
Data folder Longint 9
Database folder Longint 4
Database folder Unix syntax Longint 5
HTML Root folder Longint 8
Licenses folder Longint 1
Logs folder Longint 7

You will find below a description of each folder:

Preliminary notes about folder names:

e {Disk} is the disk where the system is installed.
e The word User represents the name of the user that opened the session.

Active 4D Folder

The 4D environment uses a specific folder to store the following information:
e Preferences files used by the 4D environment applications
e Shortcuts.xml file (custom keyboard shortcuts)

e Macros v2 folder (macro commands of Method editor)
e Favorites vi1x folder, for example Favorites v13 (pathnames for local and remote databases that have been opened)

With the main 4D applications (4D and 4D Server), the active 4D folder is named 4D and is created by default at the
following location:

e On Windows 7 and higher: {Disk}:¥Users¥<userName>¥AppData¥Roaming¥4D
e On OS X: {Disk}:Users:<userName>:Library:Application Support:4D

Starting with 4D v13, in the case of an application merged with 4D Volume Desktop, the active 4D folder is found at the
following location:

e On Windows 7 and higher: {Disk}:¥Users¥<userName>¥AppData¥Roaming¥<databaseName>
e On OS X: {Disk}:Users:<userName>:Library:Application Support: <databaseName>

Licenses Folder

Folder containing the Licenses files of the machine.
The Licenses folder is placed at the following location:

e On Windows 7 and higher: {Disk}:¥ProgramData¥4D¥Licenses

e On OS X: {Disk}:Library:Application Support:4D:Licenses
Notes:

e In the case of an application merged with 4D Volume Desktop, the licenses folder is included in the package of the
application.
o If the licenses folder cannot be created in the system because of a lack of authorization, it is created at the following
locations:
o On Windows 7 and higher: {Disk}:¥Users¥<userName>¥AppData¥Roaming¥4D¥Licenses
o On OS X: {Disk}:Users:<userName>:Library:Application Support:4D:Licenses

Data Folder

Path of the folder containing the current data file. The pathname is expressed using the standard syntax of the current
platform.

4D Client Database Folder (Client machines)

4D database folder created on each 4D client machine for storing files and folders related to the database (resources, plug-
ins, Resources folder, etc.).
The 4D Client Database Folder is placed at the following location on each client machine:

e On Windows 7 and higher: {Disk}:¥Users¥<userName>¥AppData¥Local¥4D¥<databaseName_Address>
e On OS X: {Disk}:Users:<userName>:Library:Caches:4D:<databaseName_Address>

Database Folder

Folder containing the database structure file. The pathname is expressed using the standard syntax of the current platform.
With the 4D Client application, this constant is strictly equivalent to the previous 4D Client database folder constant: the
command returns the pathname of the folder created locally.

Database Folder Unix Syntax

Folder containing the database structure file. This constant designates the same folder as the previous one but the
pathname returned is expressed using the Unix syntax (Posix), of the type /Users/... This syntax is mainly used when you
use the LAUNCH EXTERNAL PROCESS command under OS X.

Current Resources folder

Resources folder of the database. This folder contains the additional items (pictures, texts) used for the database interface. A
component can have its own Resources folder. The Resources folder is located next to the database structure file.

In client/server mode, this folder can be used to organize the transfer of custom data (pictures, files, subfolders, etc.)
between the server machine and the client machines. The contents of this folder are automatically updated on each client
machine when it connects. All referencing mechanisms associated with the Resources folder are supported in client/server
mode (.lproj folder, XLIFF, pictures, and so on). In addition, 4D provides various tools that can be used to manage and
update this folder dynamically, more particularly a resources explorer.

Note: If the Resources folder does not exist for the database, executing the Get 4D folder command with the Current
resources folder constant will create it.

Logs Folder

The Logs folder of the database. This folder centralizes the log files of the current database. It is created at the same level as
the structure file and contains the following log files:

e database conversion,

e Web server requests,

e data verification and repair,

e structure verification and repair,

e backup/restore activities journal,

e command debugging,

e 4D Server requests (generated on client machines and on the server).

Note: If the Logs folder does not exist for the database, executing the Get 4D folder command with the Logs folder
constant will create it.

HTML Root Folder

Current HTML root folder of the database. The pathname returned is expressed with the standard syntax of the current
platform. The HTML root folder is the folder in which the 4D Web server looks for the requested Web pages and files. By
default, it is named WebFolder and is placed next to the structure file (or its local copy in the case of 4D in remote mode).

Its location can be set on the Web/Configuration page of the Preferences or dynamically via the WEB SET ROOT FOLDER
command.

If the Get 4D folder command is called from a remote 4D, the path returned is that of the remote machine, not that of 4D
Server.

The optional * parameter is useful in the case of an architecture using components: it can be used to determine the
database (host or component) for which you want to get the folder pathname. This parameter is only valid for Database
folder, Database folder UNIX syntax and Current resources folder folders. It is ignored in all other cases.

When the command is called from a component:

e If the * parameter is passed, the command returns the pathname of the host database folder,

o If the * parameter is not passed, the command returns the pathname of the component folder.
The database folder (Database folder and Database folder UNIX syntax) returned differs according to the type of the
component architecture:

o In the case of a .4dbase folder/package, the command returns the pathname of the .4dbase folder/package,

o In the case of a .4db or .4dc file, the command returns the pathname of the “Components” folder,

o In the case of an alias or shortcut, the command returns the pathname of the folder containing the original matrix
database. The result differs according to the format of this database (.4dbase folder/package or .4db/.4dc file), as
described above.

When the command is called from the host database, it always returns the pathname of the host database folder,
regardless of whether or not the * parameter is passed.

Extras Folder (obsolete)
Folder with customized contents downloaded to each client machine.

Compatibility Note: Beginning with version 11.2 of 4D v11 SQL, it is no longer advisable to use the Extras folder for
customized communication between the server and remote machines. It is now recommended to use the Resources folder
for this purpose (see the description of the current Resources folder below). The Extras folder is nevertheless still supported
by 4D Server so as to maintain the compatibility of existing applications.

Note: If the Extras folder does not exist for the database, executing the Get 4D folder command with the Extras folder
constant will create it.

Example 1

During the startup of a single-user database, you want to load (or create) your own settings in a file located in the 4D folder.
To do so, in the On Startup database method, you can write code similar to this:

MAP FILE TYPES ("PREF”;”“PRF”;“Preferences file”)

$vsPrefDocName:=Get 4D folder+ MyPrefs”

[T (Test path name ($vsPrefDocName+ (”. PRF”*Num(On Windows)))#Ils a document)
$vtPrefDocRef:=Create document ($vsPrefDocName;“PREF”)

Else
$vtPrefDocRef:=0pen document ($vsPrefDocName; “PREF”)

End if

[(0K=1)

CLOSE DOCUMENT ($vtPrefDocRef)
Else

End if

Example 2

This example illustrates the use of the Database folder UNIX syntax constant under Mac OS to list the contents of the
database folder:

$posixpath:="¥""+Get 4D folder (Database folder Unix syntax)+"¥"”
$myfolder:="1s - “+§posixpath

$in:=""

$out:=""

Serr=""

LAUNGH EXTERNAL PROCESS ($myfolder;$in;$out;$err)

Note: Under Mac OS, it is necessary to put pathnames in quotes when they contain the names of files or folders with spaces
in them. The escape sequence "¥" can be used to insert the quotation mark character into the string. You can also use the
statement Char(Double quote).

Example 3

You can compute the paths to the user settings files:

$UserSettings4Data:=Get 4D folder (Data folder)+"Preferences”+Folder separator+“settings.4DSettings”
$UserSettings:=Get 4D folder (Database folder)+“Preferences”+Folder separator+“settings. 4DSettings”

System variables and sets

If the folder parameter is invalid or if the pathname returned is empty, the OK system variable is set to 0.

2 Get database localization

Get database localization {(languageType)} -> Function result

Parameter Type Description

languageType Longint Type of language
Function result String 2 Current language of the database

4

Description

The Get database localization command returns the default language or the language of the database specified by the
languageType, expressed in the standard defined by the RFC 3066. Typically, the command returns “en” for English, “es” for
Spanish, etc. For more information about this standard and the values returned by this command, please refer to
MissingRef in the Design Reference manual.

Several different language settings can be used simultaneously in the application. To designate the setting to be obtained, in
languageType you can pass one of the following constants, found in the 4D Environment theme:

Constant Type Value Comment

Curr(_ent_ Lenglie Current language of the application: default language or language set via the SET
localization DATABASE LOCALIZATION command.

Defa_ult _ LerElit @ Language set a_utomatically by 4D.o.n startup according to the Resources folder and
localization the system environment (not modifiable).

Inter_nal_4D Longint 3 Language used by 4D for sorts and text comparisons (set in the Preferences of the
localization application).

I%iji:;ltsif)enm Longint 2 Language set by the current user of the system.

By default, if you omit the languageType parameter, the command returns the default language (0).

The current language of the database can be used to determine the .Iproj folder where the program will look for the localized
items of the database. 4D automatically determines the current language on database startup according to the contents of
the Resources folder and the system environment. How it works is that 4D loads the first .Iproj folder of the database that
corresponds to the reference language, with the following order of priority:

1. System language (under Mac OS, several languages can be set by order of preference, 4D uses this setting).
2. Language of the 4D application.

3. English

4. First language found in the Resources folder.

Note: If the database does not have an .Iproj folder, 4D applies the following order of priority: 1. System language, 2.
English (if the system language cannot be identified).

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D%20Language%20Reference.html

2 Get database measures

Get database measures {(options)} -> Function result

Parameter Type Description
options Object = Return options
Function result Object =] Object containing database measures

Description

The Get database measures command allows you to get detailed information about 4D database engine events. Returned
information includes data read/write access from/to the disk or the memory cache, as well as the use of database indexes,
queries and sorts.

Get database measures returns a single object that contains all the relevant measures. The options object parameter
allows you to set options for the returned information.

Overview of the returned object

The returned object contains a single property named "DB" that has the following basic structure:

.
“diskReadBytes”: {--},
“cacheReadBytes”: {--},
“cacheMissBytes”: {--},
“diskWriteBytes”: {--},

“diskReadCount”: {---},
“cacheReadCount”: {-+-},
“cacheMissCount”: {--},
“diskWriteCount”: {-},

“dataSegment1”: {---},
“indexSegment”: {---},

“tables”: {--},
“indexes”: {--}

This object is made up of eight properties that contain basic measures ("diskReadBytes", "cacheReadBytes",
"cacheMissBytes", "diskWriteBytes", "diskReadCount", "cacheReadCount", "cacheMissCount", "diskWriteCount") and additional
properties ("dataSegmentl", "indexSegment", "tables", "index") that can also contain elementary properties but at a different
level and with a different scope (see below).

Note: A property is only present inside the object if it receives contents. Properties that do not have any contents are not
included in the object. For example, if the database has been opened in read-only mode and indexes have not been used,
the returned object will not contain "diskWriteBytes", "diskWriteCount", "indexSegment" or "indexes".

Elementary properties

Elementary properties can be found at different levels in the DB object. They return the same information but at different
scopes. Here is a description of the elementary properties:

Name Information returned
diskReadBytes Bytes read from disk
cacheReadBytes Bytes read from cache
cacheMissBytes Bytes missed from cache
diskWriteBytes Bytes written to disk
diskReadCount Read accesses from disk
cacheReadCount Read accesses from cache
cacheMissCount Read accesses missed from cache
diskWriteCount ~ Write accesses to disk

The eight elementary properties all have the same object structure, for example:

“diskReadBytes”: { “value”: 33486473620, “history”: [// optional {“value”: 52564, “time”: -1665}, {"value”:
54202, “time”: -1649}, 11
¢ "value" (number): The "value" property contains a number that represents either a quantity of bytes or a count of
accesses. Basically, this value is the sum of the value(s) of the "history" object (even if the "history" object is not
present).

o "history" (array of objects): The "history" object array is a compilation of event values grouped by second. The
"history" property is present only if requested through the options parameter (see below). The history array will hold a
maximum of 200 items. Each element of the array is itself an object that contains two properties: "value" and "time".

o "value" (number): quantity of bytes or accesses handled during the time period designated in the associated
"time" property.

o "time" (number): number of seconds elapsed since the function has been called. In the example above ("time":
-1649) means 1649 seconds ago (or more precisely between 1649 and 1650 seconds ago). During this one-
second period, 54,202 bytes have been read on disk.

The history array does not contain sequential values (-1650,-1651,-1652, etc.) The previous value is -1665, which
means that nothing was read on the disk in the 15-second period between 1650 and 1665.

Note: By default the array will only contain useful information.

Since the maximum size of the array is 200, if the database is used intensively (e.g., something is read every
second on the disk), the maximum length of the history will be 200 seconds. On the other hand, if almost nothing
happens except, for example, once every 3 minutes, the length of the history will be 600 minutes (3*200).

This example can be represented in the following diagram:

4D internal history Requested history: 30
time value time value
-2 4629 o a
-4 7788 -1 a
-6 3718 -2 4629
-B B814 -3 0
10 3823 -4 7788
12 773 -3 a
14 6807 -6 3718
16 3265 -7 1}
18 8086 -B Bge14
20 2538 -5 a
-10 3825

-11 a

-12 775

-12 0

-14 6807

o
-16 2263
-18 8086

-20 2539

=]
o

U U U

J T LAY

dataSegmentl and indexSegment

The "dataSegment1" and "indexSegment" properties contain up to four elementary properties (when available):

“dataSegment1”: {
“diskReadBytes”: {--},
“diskWriteBytes”: {---},
“diskReadCount”: {-+-},
“diskWriteCount”: {---}
1,

“indexSegment”: {

“diskReadBytes”: {---},
“diskWriteBytes”: {--],
“diskReadCount”: {---},
“diskWriteCount”: {---}

These properties return the same information as the elementary properties, but detailed for each database file:

o "dataSegmentl" represents the .4dd data file on the disk
¢ "indexSegment" represents the .4dx index file on the disk

For example, you can get the following object:

[“DB”: { "diskReadBytes”: { “value”: 718260 }, “diskReadCount”: { “value”: 229 }, “dataSegment1”: { “diskReadBytes”: {
“value”: 679092 1, “diskReadCount”: { “value”: 212 } }, “indexSegment”: { “diskReadBytes”: { “value”: 39168 },
“diskReadCount”: { “value”: 17 11

You can figure out how it works by adding up the returned values:

diskReadBytes.value = dataSegmentl.diskReadBytes.value + indexSegment.diskReadBytes.value
diskWriteBytes.value = dataSegment1.diskWriteBytes.value + indexSegment.diskWriteBytes.value
diskReadCount.value = dataSegmentl.diskReadCount.value + indexSegment.diskReadCount.value
diskWriteCount.value = dataSegmentl.diskWriteCount.value + indexSegment.diskWriteCount.value

tables

The "tables" property contains as many properties as there are tables that have been accessed either in read or write mode
since the opening of the database. The name of each property is the name of the table involved. For example:

“tables”: { “Employees”: {--+) “Companies”: {---) }

Each table objects contains up to 12 properties:

e The first eight properties are the elementary properties (see above) with values related to the table involved.
e Two other properties, "records" and "blobs", also have the same eight elementary properties, but concerning only
certain field types:
o The "records" property concerns all fields of the table (strings, dates, nums, etc.) except for text, pictures and
Blobs
o The "blobs" property concerns the text, picture and Blob fields of the table.
e One or two additional properties, "fields" and "queries", may also be present depending on the queries and sorts
performed on the table concerned:
o The "fields" property contains as many "field name" attributes (which are also sub-objects) as the number of fields
used for queries or sorts.
Each field name object contains:
= a "queryCount" object (with or without history, depending on the options parameter) if any query has been
performed using this field
= and/or a "sortCount" object (with or without history, depending on the options parameter) if any sort has
been performed using this field.
This attribute is not based on index use; all types of queries and sorts are taken into account.
Example: Since the moment the database was launched, several queries and sorts have been carried out using the
CompID, Name and FirstName fields. The returned object contains the following "fields" sub-object (options are
with path and without history):

{ “DB”: { “tables”: { “Employees”: { “fields”: { “CompID”: {
“queryCount”: { “value”: 3 } 1,
“Name”: { “queryCount”: { “value”: 1 1,
“sortCount”: { “value”: 3] 1,
i’Fi(rstg\lame"i { “sortCount”: { “value”: 2 }

Note:The "fields" attribute is created only if a query or sort has been performed on the table; otherwise this
attribute will not be present.

o "queries" is an array of objects that provides a description of each query performed on the table. Each element of
the array will contain three attributes:
= "queryStatement" (string): query string (containing field names but not criteria values). For example: "
(Companies.PK_ID = ?)"

= "queryCount" (object):

= "value" (number): number of times the query statement has been executed, regardless of the criteria
values.

= "history" (array of objects) (if requested in options): "value" and "time" standard history properties

= "duration" (object) (if the "value" is >0)
= "value" (number): number of milliseconds
= "history" (array of objects) (if requested in options): "value" and "time" standard history properties.

Example: Since the moment the database was launched, a single query has been performed on the Employees
table (options are with path and with history):

{ “DB”: “tables”: { “Employees”: { “queries”: [{
“queryStatement”: “ (Employees. Name == ?)”, “queryCount”: { “value”: 1,
“history”: [{ “value” 1
“time”: -2022 }]
1, “duration”: { “value”: 2, “history”: [
“value”: 2, “time”: -2022

}] } | O

Note: The "queries" attribute is created when at least one query has been performed on the table.

indexes

This is the most complex object. All tables that have been accessed using one or more of their indexes are stored as
properties and, inside the properties, the names of the indexes used are also included as properties. Keyword indexes
appear separately and their names are followed by "(Keyword)". Finally, each index name property object contains the eight
elementary properties related to this index as well as up to four sub-objects depending on index use in the database since it
was launched (each sub-object only exists if their corresponding operation has been performed at some point since the
launch of the database).

Example: Since the moment the database was launched, several indexes of the [Employees]EmpLastName field have been
solicited. In addition, 2 records were created and 16 were deleted in the [Companies] table. This table has a "name" field
that is indexed. The table also has been queried and sorted using this field. The resulting object will contain:

“indexes”: | “Employees”: { “EmpLastName”: { “diskReadBytes”: {--}, “cacheReadBytes”: {---},
“cacheMissBytes”: {---}, “diskWriteBytes”: {---}, “diskReadCount”: {---}
“cacheReadCount”: {---}, “cacheMissCount™: {---}, “diskWriteCount™: {--- “EmpLastName
(Keyword) ": {...}, “index3Name”: {---}, “index4Name”: {---}, } “Companies”: { “Name” :
(...) “queryCount”: { “value”: 41 1, “sortCount”: { “value”: 3
, “insertKeyCount”: { “value”: 2 1 “deleteKeyCount”: {
“value”: 16 } table3Name: {---} }

options parameter

The options parameter allows you to customize the actual information returned by the command. In options, you pass an
object that can contain up to three properties: "withHistory", "historyLength", and "path".
Property Type Description
L " "true" means the history will be returned by the function inside the returned object; "false"
withHistory Boolean
means the object returned by the function will not contain any history
"historyLength" number Defines the size of the returned history array in seconds(*).

Full path of specific property or array of full paths for all specific properties that you want to
get. When you pass a string, only the corresponding value is returned in the "DB" object (if

strin
"oath st:ng | the path is valid). Example: "DB.tables.Employees.records.diskWriteBytes". When you pass an
P array? array of strings, all the corresponding values are returned in the "DB" object (if the paths are

valid). Example: ["DB.tables.Employee.records.diskWriteBytes",
"DB.tables.Employee.records.diskReadCount","DB.dataSegment1.diskReadBytes"]

(*) As described above, the history is not stored as a sequence of seconds but only with relevant values. If nothing happens
during a couple of seconds or more, nothing will be stored and a gap will appear in the internal history array. "time" can
contain, for example, -2, -4, -5, -10, -15, -30 with values 200, 300, 250, 400, 500,150. If the "historyLength" property
value is set to 600 (10 minutes), then the returned array will contain 0, -1, -2, -3 --- -599 for time, and only the values of -2,
-4, -5, -10, -15, -30 will be filled. All the other values will get 0 (zero) as a value. Also as described above, the only limit of
the internal array is the size (200), not the time. This means that if there is low activity for a specific property, the oldest
time can be very remote (e.g.: -3600 for one hour ago). It may also contain less than 200 values if the database was just
started. In these cases, if the internal history time is more recent than the requested one OR if all the relevant values have
already been set in the returned array, then the returned value will be -1.

Example: The database has just been started 20 seconds ago and the request history is 60 seconds. The returned values
between 0 and -20 will be set with values or zeros, and the other ones will be set with -1. When a "-1" value is returned,
this means that either the request time is too old or the value is no longer in the internal history array (i.e., the 200-item
limit has been reached and older values have been removed).

About client/server and components

This command returns information about database usage. This means that it will return a valid object with relevant values
only when called:

e in 4D local mode (if called from a component, it returns information about the host database)

e on the server side in client/server mode.

If the command is called from a remote 4D, then the object will be left empty.

In this context, if you need to get information about the database on the server, the simplest way to perform this action is to
create a method with the "Execute on server" option enabled.

This principle will also work for a component: if the component is used in a 4D local context, it will return information about
the host database; in a 4D remote context, it will return information about the server database.

Example 1

You want to have the history logged in the returned object:

C_OBJECT ($param)

C_OBJECT ($measures)

0B SET ($param;”“withHistory”;True)
$measures:=Get database measures ($param)

Example 2

We only want to know the global number of bytes read in the cache ("cacheReadBytes"):

C_OBJECT ($oStats)

GC_OBJECT ($oParams)

0B SET ($oParams;“path”;“DB. cacheReadBytes™)
$oStats:=Get database measures ($oParams)

The object returned contains, for example:

{ “DB”: { “cacheReadBytes”: { “value”: 9516637 } 1}

Example 3

We want to request measures for cache bytes read within the last two minutes:

C_OBJECT ($oParams)

C_OBJECT ($measures)

0B SET ($oParams; “path”;“DB. cacheReadBytes™)
0B SET ($oParams;“withHistory”;True)

0B SET ($oParams;“historylLength”;2x60)
$measures:=Get database measures ($oParams)

.+ Get database parameter

Get database parameter ({aTable ;} selector {; stringValue}) -> Function result

Parameter Type Description

aTable Table —= Table from which to get the parameter, or Default table if this parameter is omitted
selector Longint = Code of the database’s parameter

stringValue String = String value of the parameter

Function result Real =) Current value of the parameter

Description

The Get database parameter command allows you to get the current value of a 4D database parameter. When the
parameter value is a character string, it is returned in the stringValue parameter.

The selector parameter designates the parameter to get. 4D offers you the following predefined constants, which are in the
“Database Parameters” theme:

Constant
Direct2D
disabled
Direct2D
hardware

Direct2D
software

Minimum
Web process

Maximum
Web process

_0_Web
conversion
mode

_o_Database
cache size

4D Local
mode
scheduler

4D Server
scheduler

Type

Longint

Longint

Longint

Longint

Longint

Longint

Longint

Longint

Longint

Value Comment

0

7

10

11

See selector 69 (Direct2D Status)

See selector 69 (Direct2D Status)

See selector 69 (Direct2D Status)

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Possible values: 0 -> 32 767

Description: Minimum number of Web processes to maintain in non-contextual mode
with 4D in local mode and 4D Server. By default, the value is 0 (see below).

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Possible values: 0 -> 32 767

Description: Maximum number of Web processes to maintain in non-contextual mode
with 4D in local mode and 4D Server. By default, the value is 10.

In non-contextual mode, for the Web server to be reactive, 4D delays the Web
processes for 5 seconds and reuses them to execute any possible future HTTP queries.
In terms of performance, this is actually more advantageous than creating a new
process for each query. Once a Web process is reused, it is delayed again for 5 seconds.
When the maximum number of Web processes has been reached, the web process is
then aborted. If no query has been attributed to a Web process within the 5 second
delay, the process is aborted, except if the minimum number of Web processes has
been reached (in which case the process is delayed again).

These parameters allow you to adjust how your Web server operates in relation to the
number of requests and the memory available as well as other parameters.

xx Selector disabled ****

Scope: 4D application

Kept between two sessions: -

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the Get cache size command.

Scope: 4D application

Kept between two sessions: Yes

Description: see selector 12

Scope: 4D application

Kept between two sessions: Yes

Description: see selector 12

Constant

4D Remote
mode
scheduler

Type

Longint

Value Comment

12

Scope: 4D application

Kept between two sessions: Yes

Possible values: for selectors 10, 11 and 12, the value parameter is expressed in
hexadecimal Ox00aabbcc as follows:

aa = minimum number of ticks per call to the system (0 to 100 included).

bb = maximum number of ticks per call to the system (0 to 100 included).

cc = number of ticks between calls to the system (0 to 20 included).

If one of the values is out of range, 4D sets it to its maximum. You can pass one of the
following preset standard values in the value parameter:

e value = -1: maximum priority allocated to 4D,
e value = -2: average priority allocated to 4D,
e value = -3: minimum priority allocated to 4D.

Description: This parameter allows you to dynamically set the 4D system internal calls.
Depending on the Selector, the scheduler value will be set for:

e 4D local mode when the command is called from a 4D single-user application
(selector=10).

e 4D Server when the command is called from 4D Server (selector=11).

e 4D remote mode when the command is called from a 4D connected to 4D Server
(selector=12).

Note: The operation of selector 12 (4D Remote Mode Scheduler) differs according to
whether the SET DATABASE PARAMETER command is executed on the server machine
or on the client machine:

- If the command is executed on the server machine, the new value will be applied to all
the client machines that connect to it subsequently.

- If the command is executed on the client machine, the new value is applied to the
client machine immediately as well as to all the client machines that connect to the
server subsequently.

You can use this operation to implement a dynamic and individualized management of
priority for each client machine. This consists in executing the command initially on the
client machine to be configured, then a second time on the server machine using the
default value, which will then be used for the client machines that connect to it
subsequently.

This operation is in effect in 4D starting with versions 6.8.6, 2003.3 and 2004.

Warning: Configuring these selectors inappropriately can cause serious degradation of
application performance. It is recommended to only modify the default values with full
knowledge of the facts.

Constant

4D Server
timeout

4D Remote
mode
timeout

Port ID

IP Address
to listen

Character
set

Max
concurrent
Web
processes

Type

Longint

Longint

Longint

Longint

Longint

Longint

Value Comment

13

14

15

16

17

18

Scope: 4D application if value positive

Kept between two sessions: Yes if value positive

Possible values: 0 -> 32 767

Description: Value of the 4D Server timeout. The default 4D Server timeout value is
defined on the "Client-Server/Network options" page of the Database settings dialog box
on the server side.

The server timeout sets the maximum period "authorized" to wait for a client response,
for example when it is executing a blocking operation. After this period, 4D Server
disconnects the client. The 4D Server Timeout selector allows you to set, in the
corresponding value parameter, a new timeout expressed in minutes. This feature is
particularly useful to increase the timeout before executing a blocking and time-
consuming operation on the client, such as printing a large number of pages, which can
cause an unexpected timeout.

You also have two options:

o If you pass a positive value in the value parameter, you set a global and
permanent timeout: the new value is applied to all process and is stored in the
preferences of the 4D application (equivalent to change in the Preferences dialog
box).

e If you pass a negative value in the value parameter, you set a local and temporary
timeout: The new value is applied to the calling process only (the other processes
keep the default values) and is reset to default as soon as the server receives any
signal of activity from the client — for example, when the operation is finished.
This option is useful for managing long operations initiated by 4D plug-ins.

To set the "No timeout" option, pass 0 in value. See example 1.

Scope (legacy network layer only): 4D application if value positive

Kept between two sessions: Yes if value positive

Description: To be used in very specific cases. Value of the timeout granted by the
remote 4D machine to the 4D Server machine. The default timeout value used by 4D in
remote mode is set on the "Client-Server/Network options" page of the Database
settings dialog box on the remote machine.

The 4D Remote mode timeout selector is only taken into account if you are using the
legacy network. It is ignored when the ServerNet layer is activated: this setting is
entirely managed by the 4D Server timeout (13) selector.

Scope: 4D local, 4D Server

Kept between two sessions: No

Description: TCP port ID used by the 4D Web server with 4D in local mode and 4D
Server. The default value, which can be set on the "Web/Configuration" page of the
Preferences dialog box, is 80. You can use the constants of the TCP Port Numbers
theme for the value parameter.

The Port ID selector is useful for 4D Web Servers compiled and merged with 4D Desktop
(in which there is no access to the Design mode). For more information about the TCP
port ID, refer to the Web Server Settings section.

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Constant

Client
minimum
Web process

Client
maximum
Web process

Client Max
Web
requests size

Client port
1D

Client IP
address to
listen

Client
character set

Client max
concurrent
Web proc

Maximum
Web
requests size

Type

Longint

Longint

Longint

Longint

Longint

Longint

Longint

Longint

Value Comment

19

20

21

22

23

24

25

27

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 6

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote

machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 7

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote

machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 27

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote

machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 15

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote

machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 16

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote

machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 17

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote

machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: See selector 18

Description: Used to specify this parameter for all the remote 4D machines used as
Web servers. The values defined using these selectors are applied to all the remote
machines used as Web servers. If you want to define values only for certain remote
machines, use the Preferences dialog box of 4D in remote mode.

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Constant

4D Server
log recording

_0_Web Log
recording

Client Web
log recording

Table
sequence
number

_0_Real
display
precision

Type

Longint

Longint

Longint

Longint

Longint

Value Comment

28

29

30

31

32

Scope: 4D Server, 4D remote

Kept between two sessions: No

Possible values: 0 or from 1 to X (0 = do not record, 1 to X = sequential number,
added to the file name).

Description: Starts or stops the recording of standard requests received by 4D Server
(excluding Web requests). By default, the value is 0 (requests not recorded).

4D Server lets you record each request received by the server machine in a log file.
When this mechanism is enabled, two files are created in the Logs folder of the
database, next to the database structure file.They are named 4DRequestsLog_X.txt and
4DRequestsLog_ProcessInfo_X.txt, where X is the sequential number of the log. Once
the file 4DRequestsLog has reached a size of 10 MB, it is closed and a new one is
generated, with an incremented sequential number. If a file of the same name already
exists, it is replaced directly. You can set the starting number of the sequence using the
value parameter.

These text files store various information concerning each request in a simple tabbed
format: time, process number, size of request, processing duration, etc. This
information is particularly useful during the development phase of the application or for
statistical purposes. It can be imported, for example, into a spreadsheet software in
order to be processed.

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: 0 = Do not record (default), 1 = Record in CLF format, 2 = Record in
DLF format, 3 = Record in ELF format, 4 = Record in WLF format.

Description: Starts or stops the recording of Web requests received by the Web servers
of all the client machines. By default, the value is 0 (requests not recorded).

The operation of this selector is identical to that of selector 29; however, it applies to all
the 4D remote machines used as Web servers. The "logweb.txt" file is, in this case,
automatically placed in the Logs subfolder of the remote 4D database folder (cache
folder). If you only want to set values for certain client machines, use the Preferences
dialog box of 4D in remote mode.

Scope: 4D application

Kept between two sessions: Yes

Possible values: Any longint value.

Description: This selector is used to modify or get the current unique number for
records of the table passed as parameter. "Current number" means "last number used":
if you modify this value using SET DATABASE PARAMETER, the next record will be
created with a number that consists of the value passed + 1. This new number is the
one returned by the Sequence number command as well in any field of the table to
which the "Autoincrement" property has been assigned in the Structure editor or via
SQL.

By default, this unique number is set by 4D and corresponds to the order of record
creation. For additional information, refer to the documentation of the Sequence
number command.

%* Selector disabled **

Constant

Debug log
recording

Client Server
port ID

Type

Longint

Longint

Value Comment

34

35

Scope: 4D application

Kept between two sessions: No

Description: Starts or stops the sequential recording of events occurring at the 4D
programming level in the 4DDebuglog file, which is automatically placed in the Logs
subfolder of the database, next to the structure file. A new, more compact, tabbed text
format is used in the event log file "4DDebuglLog[_n].txt" starting with 4D v14 (where
_n is the segment number of the file).

Possible values: Longint containing a bit field: value =
bit1(1)+bit2(2)+bit3(4)+bit4(8)+:--).

- Bit 1 (value 1) requests to enable the file (note that any other non-null value also
enables it as well)

- Bit 2 (value 2) requests call parameters to methods and commands.

- Bit 3 (value 4) enables new tabbed format.

- Bit 4 (value 8) disables immediate writing of each operation on disk (enabled by
default). Immediate writing is slower but more effective, for example for investigating
causes of a crash. If you disable this mode, the file contents are more compact and are
generated more quickly.

- Bit 5 (value 16) disables recording of plug-in calls (enabled by default).

In the (former) non-tabbed format, execution times are expressed in milliseconds and
the "< ms" value is displayed when an operation lasts less than one millisecond.

In the new tabbed format, execution times are expressed in microseconds.

Examples:

SET DATABASE PARAMETER (34;1) // enables mode v13 file without parameters, with
runtimes

SET DATABASE PARAMETER (34;2) // enables mode v13 file with parameters and
runtimes

SET DATABASE PARAMETER (34;2+4) // enables file with v14 format, with parameters
and runtimes

SET DATABASE PARAMETER (34;0) // disables file

To avoid having a file record too much information, you can restrict the 4D commands
that are examined by using selector 80, Log Command list.

This option can be enabled for any type of 4D application (4D all modes, 4D Server, 4D
Volume Desktop), in interpreted or compiled mode.

Note: This option is provided solely for the purpose of debugging and must not be put
into production since it may lead to deterioration of the application performance and
saturation of the hard disk. For more information about this format and on the use of
the 4DDebuglLog[_n].txt file, please contact the Technical Support of 4D Inc.

Scope: Database

Kept between two sessions: Yes

Possible values: 0 to 65535

Description: TCP port number where the 4D Server publishes the database (bound for
4D remote machines). By default, the value is 19813.

Customizing this value means that several 4D client-server applications can be used on
the same machine with the TCP protocol; in this case, you must indicate a different port
number for each application.

The value is stored in the database structure file. It can be set with 4D in local mode but
is only taken into account in client-server configuration.

When you modify this value, it is necessary to restart the server machine in order for
the new value to be taken into account.

Constant Type Value Comment

Invert

Longint 37
objects 9
HTTPS Port .
D Longint 39
Cli HTTP.
lent S Longint 40
port ID
Unicode

Longint 41
mode o
SQL
Q ; Longint 43
Autocommit

Scope: Database

Kept between two sessions: Yes

Possible values: 0, 1 or 2 (0 = mode disabled, 1 = automatic mode, 2 = mode
enabled).

Description: Configuration of the "object inversion" mode which is used to invert forms,
objects, menu bars, and so on, in Application mode when the database is displayed
under Windows in a right-to-left language. This mode can also be configured on the
Interface/Right-to-left languages page of the Database Settings.

e Value 0 indicates that the mode is never enabled, regardless of the system
configuration (corresponds to the Never value in the Database Settings).

e Value 1 indicates that the mode is enabled or disabled depending on the system
configuration (corresponds to the Automatic value in the Database Settings).

e Value 2 indicates that the mode is enabled, regardless of the system configuration
(corresponds to the Always value in the Database Settings).

For more information, refer to the Design Reference manual of 4D.

Scope: 4D local, 4D Server

Kept between two sessions: Yes

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Scope: All 4D remote machines

Kept between two sessions: Yes

Possible values: 0 to 65535

Description: TCP port number used by the Web servers of the client machines for
secure connections via SSL (HTTPS protocol). By default, the value is 443 (standard
value).

This selector can be used to modify by programming the TCP port used by the Web
servers of the client machines for secure connections via SSL (HTTPS protocol). By
default, the value is 443 (standard value).

This selector operates exactly the same way as selector 39; however, it applies to all the
4D remote machines used as Web servers. If you only want to modify the value of
certain specific client machines, use the Preferences dialog box of the remote 4D.

Scope: Database

Kept between two sessions: Yes

Possible values: 0 (compatibility mode) or 1 (Unicode mode)

Description: Current database operating mode, with regards to the character set. 4D
supports the Unicode character set but can function in “compatibility” mode (based on
the Mac ASCII character set). By default, converted databases are executed in
compatibility mode (0) and databases created with version 11 or higher are executed in
Unicode mode. The execution mode can be controlled via an option in the Preferences
and can also be read or (for testing purposes) modified via this selector. Modifying this
option requires the database to be restarted in order for it to be taken into account.
Note that within a component it is not possible to modify this value, but only to read it.

Scope: Database

Kept between two sessions: Yes

Possible values: 0 (deactivation) or 1 (activation)

Description: Activation or deactivation of the SQL auto-commit mode. By default, the
value is 0 (deactivated mode)

The auto-commit mode is used to strengthen the referential integrity of the database.
When this mode is active, all SELECT, INSERT, UPDATE and DELETE (SIUD) queries
are automatically included in ad hoc transactions when they are not already executed
within a transaction. This mode can also be set in the Preferences of the database.

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/SELECT.300-3201319.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/INSERT.300-3201318.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/UPDATE.300-3201317.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/DELETE.300-3201316.en.html

Constant

SQL Engine
case
sensitivity

Client log
recording

Type

Longint

Longint

Value

44

45

Comment

Scope: Database

Kept between two sessions: Yes

Possible values: 0 (case not taken into account) or 1 (case-sensitive)

Description: Activation or deactivation of case-sensitivity for string comparisons carried
out by the SQL engine.

By default, the value is 1 (case-sensitive): the SQL engine differentiates between upper
and lower case and between accented characters when comparing strings (sorts and
queries). For example “ABC"= “ABC"” but “ABC” # “Abc” and "abc" # "abc." In certain
cases, for example so as to align the functioning of the SQL engine with that of the 4D
engine, you may wish for string comparisons to not be case-sensitive
(“ABC”="Abc"="abc").

This option can also be set on the SQL page of the Database settings.

Scope: Remote 4D machine

Kept between two sessions: No

Possible values: 0 or from 1 to X (0 = do not record, 1 to X = sequential number,
attached to file name).

Description: Starts or stops recording of standard requests carried out by the 4D client
machine that executed the command (excluding Web requests). By default, the value is
0 (no recording of requests).

4D lets you record the log of requests carried out by the client machine. When this
mechanism is activated, two files are created on the client machine, in the Logs
subfolder of the local folder of the database. They are named 4DRequestsLog_X.txt and
4DRequestsLog_ProcessInfo_X.txt, where X is the sequential number of the log. Once
the file 4DRequestsLog has reached a size of 10 MB, it is closed and a new one is
generated, with an incremented sequential number. If a file with the same name already
exists, it is directly replaced. You can set the starting number for the sequence using the
value parameter.

These text files store various information concerning each request in a simple tabbed
format: time, process number, size of request, processing duration, etc. This
information is particularly useful during the development phase of the application or for
statistical purposes

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/SQL-page.300-3048855.en.html

Constant

Query by
formula on
server

Order by
formula on
server

Type

Longint

Longint

Value Comment

46

47

Scope: Current table and process

Kept between two sessions: No

Possible values: 0 (use database configuration), 1 (execute on client) or 2 (execute on
server)

Description: Execution location of QUERY BY FORMULA and QUERY SELECTION BY
FORMULA commands for the table passed in the parameter.

When using a database in client-server mode, the query "by formula" commands can be
executed either on the server or on the client machine:

e In databases created with 4D v11 SQL, these commands are executed on the
server.

e In converted databases, these commands are executed on the client machine, as
in previous versions of 4D.

e In converted databases, a specific preference (Application/Compatibility page) can
be used to globally modify the execution location of these commands.

This difference in execution location influences not only application performance
(execution on the server is usually faster) but also programming. In fact, the value of
the components of the formula (in particular variables called via a method) differ
according to the execution context. You can use this selector to punctually adapt the
operation of your application.

If you pass 0 in the value I'parameter, the execution location of query "by formula"
commands will depend on the database configuration: in databases created with 4D v11
SQL, these commands will be executed on the server. In converted databases, they will
be executed on the client machine or the server according to the database preferences.
Pass 1 or 2 in value to "force" the execution of these commands, respectively, on the
client or on the server machine.

Refer to example 4.

Note: If you want to be able to enable "SQL type" joins (see the QUERY BY FORMULA
Joins selector), you must always execute formulas on the server so that they have
access to the records. Be careful, in this context, the formula must not contain any calls
to a method, otherwise it will automatically be switched to the remote machine.

Scope: Current table and process

Kept between two sessions: No

Possible values: 0 (use database configuration), 1 (execute on client) or 2 (execute on
server)

Description : Execution location of ORDER BY FORMULA command for the table
passed in the parameter.

When using a database in client-server mode, this command can be executed either on
the server or on the client machine. This selector can be used to specify the execution
location of this command (server or client). This mode can also be set in the database
preferences. For more information, please refer to the description of selector 46, Query
By Formula On Server.

Note: If you want to be able to enable "SQL type" joins (see the QUERY BY FORMULA
Joins selector), you must always execute formulas on the server so that they have
access to the records. Be careful, in this context, the formula must not contain any calls
to a method, otherwise it will automatically be switched to the remote machine.

Constant Type Value Comment

Auto synchro

resources Longint 48
folder

ery b
Query by Longint 49

formula joins

HTTP
compression Longint 50
level

HTTP
compression Longint 51
threshold

Scope: 4D remote machine

Kept between two sessions: No

Possible values: 0 (no synchronization), 1 (auto synchronization) or 2 (ask).
Description: Dynamic synchronization mode for Resources folder of 4D client machine
that executed the command with that of the server.

When the contents of the Resources folder on the server has been modified or a user
has requested synchronization (for example via the resources explorer or following the
execution of the SET DATABASE LOCALIZATION command), the server notifies the
connected client machines.

Three synchronization modes are then possible on the client side. The Auto Synchro
Resources Folder selector is used to specify the mode to be used by the client machine
for the current session:

e 0 (default value): no dynamic synchronization (synchronization request is ignored)

e 1: automatic dynamic synchronization

e 2: display of a dialog box on the client machines, with the possibility of allowing or
refusing synchronization.

The synchronization mode can also be set globally in the application Preferences.

Scope: Current process

Kept between two sessions: No

Possible values: 0 (use database configuration), 1 (always use automatic relations) or
2 (use SQL joins if possible).

Description: Operating mode of the QUERY BY FORMULA and QUERY SELECTION
BY FORMULA commands relating to the use of "SQL joins."

In databases created starting with version 11.2 of 4D v11 SQL, these commands carry
out joins based on the SQL joins model. This mechanism can be used to modify the
selection of a table according to a query carried out on another table without these
tables being connected by an automatic relation (necessary condition in previous
versions of 4D).

The QUERY BY FORMULA Joins selector lets you specify the operating mode of the
query by formula commands for the current process:

e 0: Uses the current settings of the database (default value). In databases created
starting with version 11.2 of 4D v11 SQL, "SQL joins" are always activated for
queries by formula. In converted databases, this mechanism is not activated by
default for compatibility reasons but can be implemented via a preference.

e 1: Always use automatic relations (= functioning of previous versions of 4D). In
this mode, a relation is necessary in order to set the selection of a table according
to queries carried out on another table. 4D does not do "SQL joins."

e 2: Use SQL joins if possible (= default operation of databases created in version
11.2 and higher of 4D v11 SQL). In this mode, 4D establishes "SQL joins" for
queries by formula when the formula is suited for it (with two notable exceptions,
see the description of the QUERY BY FORMULA or QUERY SELECTION BY
FORMULA command).

Note: With 4D in remote mode, "SQL joins" can only be used if the formulas are
executed on the server (they must have access to the records). To configure where
formulas are to be executed, please refer to selectors 46 and 47.

Scope: 4D application

Kept between two sessions: No

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Scope:4D application

Kept between two sessions: No

Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands for
configuring the HTTP server.

Constant

Server base
process
stack size

Idle
connections
timeout

PHP
interpreter
IP address

PHP
interpreter
port

Type

Longint

Longint

Longint

Longint

Value Comment

53

54

55

56

Scope: 4D Server

Kept between two sessions: No

Possible values: Positive longint.

Description: Size of the stack allocated to each preemptive system process on the
server, expressed in bytes. The default size is determined by the system.

Preemptive system processes (processes of the 4D client base process type) are loaded
to control the main 4D client processes. The size allocated by default to the stack of
each preemptive process allows a good ease of execution but may prove to be
consequential when very large numbers of processes (several hundred) are created.
For optimization purposes, this size can be reduced considerably if the operations
carried out by the database allow for it (for example if the database does not carry out
sorts of large quantities of records). Values of 512 or even 256 KB are possible. Be
careful, under-sizing the stack is critical and can be harmful to the operation of 4D
Server. Setting this parameter should be done with caution and must take the database
conditions of use into account (number of records, type of operations, etc.).

In order to be taken into account, this parameter must be executed on the server
machine (for example in the On Server Startup Database Method).

Scope:4D application unless value is negative

Kept between two sessions: No

Possible values: Whole value expressing a duration in seconds. The value can be
positive (new connections) or negative (existing connections). By default, the value is
20.

Description: Maximum period of inactivity (timeout) for connections to both the 4D
database engine and the SQL engine, as well as, in ServerNet mode (new network
layer), to the 4D application server. When an idle connection reaches this limit, it is
automatically put on standby, which freezes the client/server session and closes the
network socket. In the server administration window, the state of the user process is
indicated as "Postponed". This functioning is completely transparent for the user: as
soon as there is new activity on the connection which is on standby, the socket is
automatically reopened and the client/server session is restored.

On the one hand, this setting lets you save resources on the server: connections on
standby close the socket and free up a process on the server. On the other hand, it lets
you avoid losing connections due to the closing of idle sockets by the firewall. For this,
the timeout value for idle connections must be lower than that of the firewall in this
case.

If you pass a positive value in value, it applies to all new connections in all the
processes. If you pass a negative value, it applies to connections that are open in the
current process. If you pass 0, idle connections are not subjected to a timeout.

This parameter can be set on both the server and client side. If you pass two different
durations, the shorter one is taken into account. Usually, you do not need to change this
value.

Scope: 4D application

Kept between two sessions: No

Values: Formatted string of the type "nnn.nnn.nnn.nnn" (for example "127.0.0.1").
Description: IP address used locally by 4D to communicate with the PHP interpreter
via FastCGI. By default, the value is "127.0.0.1". This address must correspond to the
machine where 4D is located. This parameter can also be set globally for all the
machines via the Database Settings.

For more information about the PHP interpreter, please refer to the Design Reference
manual.

Scope: 4D application

Kept between two sessions: No

Values: Positive long integer type value. By default, the value is 8002.

Description: Number of the TCP port used by the PHP interpreter of 4D. This
parameter can also be modified globally for all the machines via the Database Settings.
For more information about the PHP interpreter, please refer to the Design Reference
manual.

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/On-Server-Startup-Database-Method.301-3047536.en.html

Constant

PHP number
of children

PHP max
requests

PHP use
external
interpreter

Maximum
temporary
memory size

Type

Longint

Longint

Longint

Longint

Value Comment

57

58

60

61

Scope: 4D application

Kept between two sessions: No

Values: Positive long integer type value. By default, the value is 5.

Description: Number of child processes to be created and maintained locally by the
PHP interpreter of 4D. For optimization reasons, the PHP interpreter creates and uses a
set (pool) of system processes called "child processes" for processing script execution
requests. You can vary the number of child processes according to the needs of your
application. This parameter can also be modified globally for all the machines via the
Database Settings. For more information about the PHP interpreter, please refer to the
Design Reference manual.

Note: Under Mac OS, all the child processes share the same port. Under Windows, each
child process uses a specific port number. The first number is the one set for the PHP
interpreter; the other child processes increment the first one. For example, if the default
port is 8002 and you launch 5 child processes, they will use ports 8002 to 8006.

Scope: 4D application

Kept between two sessions: No

Values: Positive long integer type value. By default, the value is 500.

Description: Maximum number of requests accepted by the PHP interpreter. When this
maximum number is reached, the interpreter returns errors of the "server busy" type.
For security or performance reasons, you can modify this value. This parameter can also
be modified globally for all the machines via the Database Settings. For more
information about this parameter, please refer to the FastCGI-PHP documentation.
Note: On the 4D side, these parameters are applied dynamically; it is not necessary to
exit 4D in order for them to be taken into account. On the other hand, if the PHP
interpreter is already launched, it will be necessary to exit and relaunch it in order for
these modifications to be taken into account.

Scope: 4D application

Kept between two sessions: No

Values : 0 = use internal interpreter, 1 = use external interpreter

Description: Value indicating whether PHP requests in 4D are sent to the internal
interpreter provided by 4D or to an external interpreter. By default the value is 0 (use of
interpreter provided by 4D). If you want to use your own PHP interpreter, for example in
order to use additional modules or a specific configuration, pass 1 in value. In this case,
4D does not launch its internal interpreter in the case of PHP requests.

The custom PHP interpreter must have been compiled in FastCGI and be located on the
same machine as the 4D engine. Note that in this case, you must manage the
interpreter entirely; it will not be started nor stopped by 4D. This parameter can also be
modified globally for all the machines via the Database Settings.

Scope: 4D application

Kept between two sessions: No

Possible values: Positive longint.

Description: Maximum size of temporary memory that 4D can allocate to each process,
expressed in MB. By default, the value is 0 (no maximum size). 4D uses a special
temporary memory dedicated to indexing and sorting operations. This memory is
intended to preserve the "standard" cache memory during massive operations. It is
activated only when needed. By default, the size of the temporary memory is limited
only by the resources available (according to the system memory configuration).

This mechanism is suitable for most applications. However, in certain specific contexts,
more particularly when a client-server application simultaneously carries out a large
number of sequential sorts, the size of the temporary memory can increase critically, to
the point where it can render the system unstable. In this context, setting a maximum
size for the temporary memory allows you to preserve proper functioning of the
application. In return, the running speed might be affected: when the maximum size is
reached for a process, 4D uses disk files which may slow down processing. For specific
needs such as those described above, a maximum size of around 50 MB is generally a
good compromise. However, the ideal value will need to be determined according to the
specificities of the application and will generally be the result of real-time volumetric
testing.

Constant

SSL cipher
list

Cache
unload
minimum
size

Direct2D
status

Type

String

Longint

Longint

Value Comment

64

66

69

Scope: 4D application
Kept between two sessions: No
Possible values: Sequence of strings separated by colons (for example "RC4-MD5:RC4-

Description: Cipher list used by 4D for the secure protocol. This list modifies the
priority of ciphering algorithms implemented by 4D. For example, you can pass the
following string in the value parameter: "AES:ALL:!aNULL:!eNULL:+RC4: @STRENGTH".
For a complete description of the syntax for the ciphers list, refer to the ciphers page of
the OpenSSL site.

This setting applies to the entire 4D application (it concerns the HTTP server, SQL
server, client/server connections, as well as the HTTP client and all the 4D commands
that make use of the secure protocol) but it is temporary (it is not maintained between
sessions).

When the cipher list has been modified, you will need to restart the server concerned in
order for the new settings to be taken into account.

To reset the cipher list to its default value (stored permanently in the SLI file), call the
SET DATABASE PARAMETER command and pass an empty string ("") in the value
parameter.

Note: With the Get database parameter command, the cipher list is returned in the
optional stringValue parameter and the return parameter is always 0.

Scope: 4D application

Kept between two sessions: No

Possible values: Positive longint > 1.

Description: Minimum size of memory to release from the database cache when the
engine needs to make space in order to allocate an object to it (value in bytes).

The purpose of this selector is to reduce the number of times that data is released from
the cache in order to obtain better performance. You can vary this setting according to
the size of the cache and that of the blocks of data being handled in your database.

By default, if this selector is not used, 4D unloads at least 10% of the cache when space
is needed.

Scope: 4D application

Kept between two sessions: No

Description: Activation mode to implement Direct2D under Windows.

Possible values: One of the following constants (mode 3 by default):

Direct2D Disabled (0): Direct2D mode is not enabled and the database functions in the
previous mode (GDI/GDIPIlus).

Direct2D Hardware (1): Use Direct2D as graphics hardware context for entire 4D
application. If this context is not available, use Direct2D graphics software context
(except under Vista, in which case GDI/GDIPlus mode is used for better performance).
Direct2D Software (3) (Default mode): Beginning with Windows 7, use Direct2D
graphics software context for entire 4D application. Under Vista, GDI/GDIPlus mode is
used for better performance.

Compatibility note: Starting with 4D v14, hybrid modes are disabled and redirected to
available modes (the former mode 2 is equivalent to 1; former modes 4 and 5 are
equivalent to mode 3).

https://www.openssl.org/docs/apps/ciphers.html
https://www.openssl.org/docs/apps/ciphers.html

Constant

Direct2D get
active status

Diagnostic
log recording

Log
command
list

Spellchecker

Type

Longint

Longint

String

Longint

Value Comment

74

79

80

81

Note: You can only use this selector with the Get database parameter command and
its value cannot be set.

Description: Returns active implementation of Direct2D under Windows.

Possible values: 0, 1, 2, 3, 4 or 5 (see values of selector 69). The value returned
depends on the availability of Direct2D, the hardware and the quality of Direct2D
support by the operating system.

For example, if you execute:

SET DATABASE PARAMETER (Direct2D status;Direct2D Hardware)
$mode :=Get database parameter (Direct2D get active status)

- On Windows 7 and higher, $mode is set to 1 when the system detects hardware
compatible with Direct2D; otherwise, $mode is set to 3 (software context).

- On Windows Vista, $mode is set to 1 when the system detects hardware compatible
with Direct2D; otherwise, $mode is set to 0 (disabling of Direct2D).

- On Windows XP, $mode is always set to 0 (not compatible with Direct2D).

Scope: 4D application

Kept between two sessions: No

Possible values: 0 or 1 (0O = do not record, 1 = record)

Description: Starts or stops recording of the 4D diagnostic file. By default, the value is
0 (do not record).

4D can continuously record a set of events related to the internal application operation
into a diagnostic file. Information contained in this file is intended for the development
of 4D applications and can be analyzed with the help of the 4D tech support. When you
pass 1 in this selector, a diagnostic file, named DatabaseName_X.txt, is automatically
created (or opened) in the database Logs folder. Once this file reaches a size of 10 MB,
it is closed and a new file named DatabaseName_X.txt is generated, with an
incremented sequence number X.

Note that you can include custom information in this file using the LOG EVENT
command.

Scope: 4D application

Kept between two sessions: No

Possible values: String containing a list of 4D command numbers to record (separated
by semi-colons) or "all" to record all the commands or "" (empty string) to record none
of them.

Description: List of 4D commands to record in the debugging file (see selector 34,
Debug Log Recording). By default, all 4D commands are recorded.

This selector restricts the quantity of information saved in the debugging file by limiting
the 4D commands whose execution you want to record. For example, you can write:

SET DATABASE PARAMETER (Log command |ist;”277;341")

Scope: 4D application

Kept between two sessions: No

Possible values: 0 (default) = native OS X spellchecker (Hunspell disabled), 1 =
Hunspell spellcheck enabled.

Description: Enables the Hunspell spellcheck under OS X. By default, the native
spellchecker is enabled on this platform. You may prefer to use the Hunspell spellcheck,
for example, in order to unify the interface for your cross-platform applications (under
Windows, only the Hunspell spelicheck is available). For more information, refer to
Support of Hunspell dictionaries.

Constant

QuickTime
support

JSON use
local time

Use legacy
network
layer

SQL Server
Port ID

Type

Longint

Longint

Longint

Longint

Value

82

85

87

88

Comment

Scope: 4D application

Kept between two sessions: Yes

Possible values: 0 (default) = QuickTime disabled, 1 = QuickTime enabled.
Description: In 4D starting with v14, by default QuickTime codecs are no longer
supported. For compatibility, you can use this selector to re-enable them in your
database. Modification of this option requires that the database be restarted.
Nevertheless, you should note that in future versions of 4D, QuickTime support is
permanently removed.

Scope: Current process

Kept between two sessions: No

Possible values: 0 = ignore local time zone, 1 (default) = take time zone into account.
Description: By default, 4D dates converted to JSON format take the local time zone
into account. For example, converting the date 123/08/2013! gives you "2013-08-
22T22:00:00Z" in JSON format when the operation is performed in France during
Daylight Savings Time (GMT+2). This principle conforms to the standard operation of
JavaScript.

This can be a source of errors when you want to send JSON date values to someone in a
different time zone. This is the case, for example, when you export a table using
Selection to JSON in France that is meant to be reimported in the US using JSON TO
SELECTION. By default, since dates are re-interpreted in each time zone, the values
stored in the database will be different. In this case, you can modify the conversion
mode for dates so that they do not take the time zone into account by passing 0 in this
selector. Converting the date 123/08/2013! will then give you "2013-08-23T00:00:00Z2"
in all cases.

Scope: 4D in local mode, 4D Server

Kept between two sessions: Yes

Description: Sets or gets the current status of the legacy network layer for
client/server connections. The legacy network layer is obsolete beginning with 4D v14
R5 and should be replaced progressively in your applications with the ServerNet
network layer. ServerNet will be required in upcoming 4D releases in order to benefit
from future network evolutions. For compatibility reasons, the legacy network layer is
still supported to allow a smooth transition for existing applications; (it is used by
default in applications converted from a release prior to v14 R5). Pass 1 in this
parameter to use the legacy network layer (and disable ServerNet) for your
client/server connections, and pass 0 to disable the legacy network (and use the
ServerNet).

This property can also be set by means of the "Use legacy network layer" option found
on the Compatibility page of the Database Settings (see Network and Client-Server
options). In this section, you will also find a discussion about migration strategy. We
recommend that you activate the ServerNet as soon as possible.

You will need to restart the application in order for this parameter to be taken into
account. It is not available in 4D Server v14 R5 64-bit version for OS X, which only
supports the ServetNet; (it always returns 0).

Possible values: 0 or 1 (0 = do not use legacy layer, 1 = use legacy layer)

Default value: 0 in databases created with 4D v14 R5 or higher, 1 in databases
converted from 4D v14 R4 or earlier.

Scope: 4D local, 4D Server.

Kept between two sessions: Yes

Description: Gets or sets the TCP port number used by the integrated SQL server of 4D
in local mode or 4D Server. By default, the value is 19812. When this selector is set, the
database setting is updated. You can also set the TCP port humber on the "SQL" page of
the Database Settings dialog box.

Possible values: 0 to 65535.

Default value: 19812

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Compatibility-page.300-3048844.en.html
file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Network-and-Client-Server-options.300-3047544.en.html

Constant Type Value

Circular log

. Longint 90
limitation

Number of
formulas in Longint 92
cache

Cache flush

Longint 95
periodicity ongn

Example 1

Comment

Scope: 4D local, 4D Server.

Kept between two sessions: No

Possible values: Any integer value, 0 = keep all logs

Description: Maximum number of files to keep in rotation for each type of log. By
default, all files are kept. If you pass a value X, only the X most recent files are kept,
with the oldest being erased automatically when a new one is created. This setting
applies to each of the following log files: request logs (selectors 28 and 45), debug log
(selector 34), events log (selector 79), as well as Web request logs and Web debug logs
(selectors 29 and 84 of the WEB SET OPTION command).

Scope: 4D application

Kept between two sessions: No

Possible values: Positive longints

Default value: 0 (no cache)

Description: Sets or gets the maximum number of formulas to be kept in the cache of
formulas, which is used by the EXECUTE FORMULA command. This limit is applied to
all processes, but each process has its own formula cache. Caching formulas accelerates
the EXECUTE FORMULA command execution in compiled mode since each cached
formula is tokenized only once in this case. When you change the cache value, existing
contents are reset even if the new size is larger than the previous one. Once the
maximum number of formulas in the cache is reached, a new executed formula will
erase the oldest one in the cache (FIFO mode). This parameter is only taken into
account in compiled databases or compiled components.

Scope: 4D local, 4D Server

Kept between two sessions: No

Possible values: longint > 1 (seconds)

Description: Gets or sets the current cache flush periodicity, expressed in seconds.
Modifying this value overrides the Flush Cache every X Seconds option in the
Database/Memory page of the Database settings for the session (it is not stored in
the Database settings).

The following method allows you to get 4D scheduler current values:

C_LONGINT ($ticksbtwcal I's;$maxticks;$minticks;$Iparams)

[T (Application type=4D Local Mode)
$lparams:=Get database parameter (4D Local Mode Scheduler)
$ticksbtwcal Is:=$Iparams &0x00ff
$maxticks:=(§|params>>8) &0x00f T
$minticks:=($Iparams>>16) &0x00ff

End if

Example 2

The selector 16 (IP address to listen) lets you get the IP address on which the 4D Web server receives HTTP requests. The

following example splits up the hexadecimal value:

C_LONGINT ($a:$b;$c:$d)
C_LONGINT ($addr)

$addr :=Get database parameter (IP_Address to listen)

$a:= ($addr>>24) &0x000000FF
$b:=($addr>>16) &0x000000
$0:= ($addr>>8) 80x000000F
$d:=$addr&0x000000F

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/DatabaseMemory-page.300-3048845.en.html

.+ Get last update log path

Get last update log path -> Function result

Parameter Type Description

Function result Text = | Pathname of most recent update log
Description

The Get last update log path command returns the complete pathname of the most recent update log file found on the
machine where it is called.

The update log is generated by 4D during automatic update processes. It contains information about the updates performed
as well as any errors that occurred.

This command is intended to be used in an automatic update process for a merged application (server or single-user). For
more information, refer to Finalizing and deploying final applications in the Design Reference manual.

file:///C:/Users/teshima/Desktop/4Dv16ENDoc/4D/16/Finalizing-and-deploying-final-applications.200-3048746.en.html

.+ GET SERIAL INFORMATION

GET SERIAL INFORMATION (key ; user ; company ; connected ; maxUser)

Parameter Type Description

key Longint = Unique product key (encrypted)

user String = Registered name

company String = Registered organization

connected Longint o Number of connected users

maxUser Longint = Maximum number of connected users

Description

The GET SERIAL INFORMATION command returns various information about the 4D current version serialization.

e key: unique ID of the installed product. A unique number is associated to a 4D application (such as 4D Server, 4D in
local mode, 4D Desktop, etc.) installed on a machine. This number is encrypted, of course.

e user: Name application user as defined when installing.

e company: User’'s company or organization name as defined during installation.

e connected: Number of connected users when executing the command.

e maxUsers: Maximal number of users concurrently connected.

Note: The last two parameters always return 1 for 4D single user except in demonstration versions (0 is then returned).
GET SERIAL INFORMATION is part of the general component protection scheme implemented in 4D. Component
developers can associate a copy of their product to a given installed 4D application, in order to avoid any illegal copies.

The serialization works as follows: a user who wants to get a component sends his unique key generated through the GET
SERIAL INFORMATION command to the developer. This can be done through an Order form included in a demo version of
the component. The generated key is unique and is associated to a specific 4D application.

The component developer can then generate his own serial number combining the key and a given cipher. The delivered
component will offer a function verifying if the information returned by the GET SERIAL INFORMATION matches this serial
number. Otherwise, the user will not be able to use the component.

Note: Plug-ins developers can use this protection scheme too. For more information, refer to the 4D Plugin API Reference.

http://sources.4d.com/trac/4d_4dpluginapi#no1

.+ Get table fragmentation

Get table fragmentation (aTable) -> Function result

Parameter Type Description
aTable Table —=» Table for which to get the fragmentation rate
Function result Real e] Percentage of fragmentation

Description

The Get table fragmentation command returns the percentage of logical fragmentation for the records of the table
designated by the aTable parameter.

The rate of logical fragmentation of the records indicates whether the records are stored in an ordered manner in the data
file. If the fragmentation becomes too high, this can considerably slow down sorts and sequential searches on the table. A

fragmentation percentage of 0 corresponds to no fragmentation. Beyond a rate of 20%, it may be useful to compact the
data file.

Example

This maintenance method lets you request the compacting of the data file in the case where there is considerable
fragmentation in at least one table of the database:

ToBeCompacted:=False
For (§i ;1:Get last table number)
[f(Is table number valid($i))
[T (Get table fragmentation(Table(§i)—>)>20)
ToBeCompacted:=True
End if
End if
End for
[T (ToBeCompacted)

End if

.+ Is compiled mode

Is compiled mode {(*)} -> Function result

Parameter Type Description
& Operator = Returns information about host database
Function result Boolean =] Compiled (True), Interpreted (False)

Description

Is compiled mode tests whether you are running in compiled mode (True) or interpreted mode (False).

The optional * parameter is useful in the case of an architecture using components: it can be used to determine the
database (host or component) for which you want to find out the running mode.

e When the command is called from a component:

o If the * parameter is passed, the command returns True or False depending on the mode in which the host
database is running,

o If the * parameter is not passed, the command returns True or False depending on the mode in which the
component is running.

e When the command is called from a method of the host database, it returns True or False depending on the mode in
which the host database is running.

Example

In one of your routines, you include debugging code useful onl