
 Deprecated and Removed Features

 Rev. January 2017

About this manual

For over 30 years, our main goal has been to enhance our product (using new concepts and technologies) while
ensuring the compatibility of 4D applications. As early adopters of 4D know, we have always put a lot of effort into
compatibility, and we can find 4D applications all over the world that were created years and years ago, with old
versions of 4D and of an OS, that are still working with the latest revisions of the product.
Unfortunately, it sometimes becomes too difficult to mix old technologies with new:

4D must bring new technologies, new APIs, and new paradigms to developers.
OSes change every day, and sometimes deprecate their own old APIs

This is why 4D sometimes needs to tag some commands and features as deprecated, meaning that one day, they
will be removed from the language in a future major version.
Letting developers know what is deprecated and what kind of replacement can be used instead makes it much more
comfortable for them to implement the change in their code: There is no urgency, no pressure, and the developer
has plenty of time to make any necessary changes.
We start by covering all the functions that are currently deprecated or that have been removed in 4D v16 R2,
followed by a list of deprecated commands along with their current status. We also provide a quick summary table.
You can also access the equivalent documents generated for previous major versions of 4D.

 Deprecated or removed features in v16 product range
 Quick table
 Previous documents
 What's new

 Deprecated or removed features in v16 product range

About 4D 64-bit versions

64-bit versions of 4D favor recent technologies and usually do not support those that have been declared obsolete
in previous versions of 4D. For a complete list of functions that are not supported in the 64-bit product range of
4D, please refer to the Specific features of 64-bit versions section in the Design Reference manual.

XSLT commands deprecated

The XSLT language, inspired by functional programming concepts, transforms XML data to any format (XML,
HTML, or any other type). All major Web browsers as well as 4D software have implemented the XSLT 1.0
specification.
Currently the XSLT trend is in decline because developers consider that it is difficult to use and debug. Following
this trend as well as feedback from developers, we decided that the XSL transformation feature will not be
developed for 4D 64-bit versions. However, to support our customers still using XSLT in 4D, we made the choice to
rely on the PHP XSL library, which provides a comprehensive API allowing you to perform all operations necessary
for your XSL transformations. This library is an efficient tool which can easily replace the _o_XSLT APPLY
TRANSFORMATION, _o_XSLT SET PARAMETER and _o_XSLT GET ERROR commands after their removal. 4D
has produced a specific document to help you use PHP XSL as a replacement for the 4D XSLT commands:
Download XSLT with PHP technical document (PDF).
We also suggest that you consider using 4D tags when dealing with the dynamic generation of HTML pages, since
in most cases it is easier if you handle HTML code as unformatted text (see also the PROCESS 4D TAGS
command).
Note: Trends of XSLT search in Google: #command_6
For compatibility, XSL transformations are still supported in 4D, but their use is now discouraged. Support for
XSLT processing will be removed in future 4D releases.
Note for 64-bit versions: XSLT is not available with 4D 64-bit (OS X and Windows) and 4D Server 64-bit for OS
X. Consequently, calling one of the XSLT commands from these applications will generate an error 33
"Unimplemented command or function".

Pictures in PICT format

The PICT format will not be supported in the next major releases of 4D and you must no longer use it in 4D. The
GET PICTURE FORMATS command helps you detect and filter pictures using the PICT format in your data file (the
_o_AP Is Picture Deprecated function of 4D Pack is now obsolete).
Note: The Mac "PICT" format has been deprecated by Apple since several prior Mac OS versions (see the
description of PICT format on Wikipedia).
The ʻPICTʼ format is a very old Mac format. Prior to version 11, 4D stored all pictures in this format, even on
Windows. The PICT format has been deprecated since QuickDraw was deprecated in 2005.
There is one important thing to understand about PICT. It can store (read “encapsulate”) 2 main kinds of
information:

the drawing primitives themselves (either bitmap or vectorial), or
a more modern format (JPEG for example) stored in a PICT using QuickTime. (Usually the developer was
calling _o_QT COMPRESS PICTURE with the QT Photo compressor constant).

This means that even back when all pictures stored in the data files were PICT, those PICTs could, in fact, contain
JPEGs (or other formats). Itʼs important for our customers to stop using PICT, not only because it is obsolete, but

also because 4D needs Altura (+ QuickTime if _o_QT COMPRESS PICTURE was used) to read PICT on Windows.
This is not efficient, and it requires QuickTime to be installed.
When migrating data from versions prior to v11, developers should apply the CONVERT PICTURE command to
every picture field of the data. When converting data from more recent versions, we recommend using the GET
PICTURE FORMATS command to find pictures in your data file that need to be converted.

Detecting PICT format in your database structure
Starting with v16, you can detect pictures that use the deprecated PICT format in your database structure by
means of the Maintenance and security center (MSC). When you use the Verifying the application feature,
the log file produced includes warnings indicating any pictures found which use or contain the PICT format. These
warnings may concern static pictures, as well as pictures found in the picture library or in form objects.
Note: It is up to you to either remove or replace pictures that use the deprecated PICT format. Using the MSC to
perform a Repair the structure file operation does not have any effect on "deprecated" pictures and the same
warnings will appear in its log file.

QuickTime

Support for the picture codecs related to QuickTime is now obsolete.
By default, the use of QuickTime is disabled since 4D v14. However for compatibility reasons, you can enable it
using the new QuickTime support option of the SET DATABASE PARAMETER, Get database parameter
commands (except in 64-bit versions of 4D, where QuickTime is not supported).

QuickTime image formats under Windows
For several years, image handling under the Windows version of QuickTime has not evolved (only the video part is
evolving). We plan to remove support for these specific APIs in the next release.
4D for Windows natively supports all major formats (JPEG, PNG, GIF, TIFF, etc.), and also supports WIC (Windows
Imaging Component). If, in your data, you have some pictures saved–under Windows–in a specific format known
only by QuickTime, you can convert them (CONVERT PICTURE).
We also remind you that the support for QuickTime picture formats has been removed from the 64-bit version of
4D Server for Windows as of 4D v12.

Dynamic assignment of variables received through HTTP

In previous versions of 4D, the Web server automatically recopied the value of variables sent through a Web form
or a URL into 4D variables when they had the same name.
For reasons of optimization and control, this principle is not maintained starting with 4D v14: the value of Web
variables are no longer automatically assigned to the 4D variables. To recover variables sent using a POST or a
GET, you must use the WEB GET VARIABLES command exclusively. To recover the posted files, you must use the
WEB GET BODY PART/WEB Get body part count commands.
Note: Dynamic assignment is also disabled by default in 4D databases created beginning with version 13.4.
However, for compatibility, this mechanism is maintained by default in databases created with a version of 4D
earlier than 13.4. In this case, you can disable it using the Automatic variable assignment compatibility option
on the Compatibility page of the Database Settings.
Since this mechanism is obsolete, we strongly recommend that you uncheck this option in your converted
databases (and adapt your code if necessary) so as to facilitate future evolutions.

Mac OS QuickDraw fonts no longer supported

QuickDraw fonts (e.g. Geneva, Chicago) are now deprecated and you should no longer use ID numbers to
designate fonts. The _o_Font number and _o_Font name commands are kept in 4D v15 and higher for
compatibility but will be removed in subsequent versions. The OBJECT SET FONT command now only accepts font
names.

Altura Mac2Win

Altura Mac2Win was used to port 4D to Windows. It is a set of APIs that helped porting Mac OS (pre OS X) code to
Windows, by translating APIs: filesystem, QuickDraw, Resources, PICT, etc. It was very useful and helped a lot
(Mac plug-in developers, for example, could move their plug-ins to Windows more easily), but it translates old
(read “deprecated”) Mac OS APIs, and doesnʼt use modern native Windows APIs: 4D must remove Mac2Win from
its code as much as possible. This is very long and hard work, and in each version of 4D, some dependencies are
removed (and replaced by modern APIs).
Right now, 4D still depends on it in part, mostly to be able to handle compatibility of old databases: Resources,
PICT, part of the user events handling, support for third party plug-ins that are built using Altura, etc.
By removing resources in the .RSR file to separate files in the “Resources” folder, and by converting (CONVERT
PICTURE) to not-PICT, 4D developers will be ready once 4D has removed Altura. But the first people concerned by
this huge step are plug-in developers. They must stop using Altura as soon as possible, which means they must
rewrite some parts of their Windows source code. (We have already been warning them for several years now.)

Subtables

Over several major versions, 4D has warned developers against the use of subtables and since 4D v11, it is no
longer possible to create a field of the SubTable type. Subrecords have several known limitations. For example,
they are always loaded in memory; they are not handled by the SEND RECORD or DUPLICATE RECORD
commands.
We do not plan to remove support for subtables in the near future, but itʼs really time for developers to convert
their subtables to regular N-> tables because we do plan to remove them in a future major version of 4D.
Developers who used subtables for performance reasons (certain specific situations where loading related records
was slow) can be reassured, especially since v12: the speed is here and using classic N<->1 relations is very fast.
Basically, there are two main ways to remove subtables (note: the following is not a full tech tip; just a quick
overview):

Before conversion from a pre-v11 structure: in 2004, create the appropriate N table and the ID field in the 1
table (if not already there). Then change the code everywhere it is needed (see below).
After conversion: in this situation, 4D has replaced the subtable with a N table using a special relation, that
allows the language to work with the subselection and the subrecords. The 4D developer needs to remove this
special relation, replace it with a normal relation and change the code everywhere if it is needed (see below).

What we mean by “change the code everywhere if it is needed” is, basically:

Create the new forms, update included forms
In the methods (project, form, object, etc.):

Replace all commands of the “SubRecords” theme with the corresponding Selection or Record command
(for example, replace _o_CREATE SUBRECORD with CREATE RECORD, filling the ID fields)
Explicitly load the N records when needed

Note: Starting with 4D v14 R3, you can assign values to the special "id_added_by_converter" fields that are
automatically added by 4D when it converts a database containing subtables. This allows you to keep the "subtable
relation" link, and add or modifiy related records, without needing to use deprecated commands such as
_o_CREATE SUBRECORD. Once you have updated your methods, these special relations can be replaced with
standard ones with no change in your code.

Non-Unicode mode

Supporting ASCII mode (synonym for “non-Unicode mode”) leads to poor performance when manipulating text
because it must be converted to and from Mac-Roman every time it is used in the legacy-converted structure. We
plan to remove ASCII mode in future major versions.
Note that support for ASCII mode was already removed for compiled structures running under 4D Server 64-bit for
Windows.
4D developers should – for converted structures – activate the Unicode mode. The Conversion to 4D v14 PDF

document gives hints about this topic.
Note for 64-bit versions: ASCII mode is not supported in 64-bit versions of 4D and 4D Server.

Mac Resources

This is another old Mac OS technology, deprecated since Mac OS X 10.4 (Tiger, 2005). Resources are used to store
structured data such as text and strings (localization), as well as icons, etc. Basically, we can say that itʼs not the
resources that are deprecated, itʼs their on-disk support, known as the resource fork. The resource fork is part of
the Mac OS file system, and since the beginning of Mac OS X, Apple has tried to remove this support as it is not
compatible with other file systems (Unix, Windows), and is the source of a lot of problems when files are
transferred via the network.
On Windows, this mechanism is emulated and Mac Resources reside in a .RSR file.
But even if there are still APIs to handle resources (and Mac OS transparently handles resources stored in a data
fork), it is no longer recommended to use this old mechanism for several reasons:

Text and strings are Mac-Roman. You canʼt store Unicode in resources of type TEXT or STR#
PICT resources store PICTs: not modern, deprecated, no transparency, etc. (See the “Pictures in PICT format”
topic above.)
The count of resources and the size of the resources are limited (about 2700 resources or 16 MB)

We have removed support for commands that write/create resources.
The vast majority of 4D applications using resources are in fact using the “Strings List” resources, ʻSTR#ʼ. 4D
provides tools to easily move from STR# to XLIFF:

The 4D Pop component can automatically create the XLIFF files by reading and transferring the content of the
STR#.
All the routines and expressions that reference STR# work with no change with XLIFF. For example, if the
label of a button or a menu was “:15000,3” (meaning “get the third item of STR# ID 15000”), 4D will load the
appropriate XLIFF (if it exists).

For other kinds of resources:

Put resources in separate files inside the Resources folder (create sub-directories if needed):
Save 'TEXT' resources in XLIFF or .txt files
Save 'PICT' resources as separate .jpg/.png/etc. files
Save 'PICT' + MASKʼ resources as png files
Use (on Mac) icns instead of ICON or colored icons
Save any private resources as appropriate for you (typically: save as a binary file with a specific
extension)

Use the “Resources” folder to store your resources. Use Get 4D folder(Current resources folder) to
dynamically get the parent path for your resources.

API QuickDraw for plug-ins

There are two types of plug-ins: those using the new plug-in API, and those that still use the old one (with
QuickDraw).
For plug-ins using the old tool box (with QuickDraw): to maintain compatibility, the drawing/rendering is no longer
done directly in a QuickDraw port, as in previous versions, but instead through a GWorld QuickDraw offscreen area
dedicated to the plugin.
Consequently, you have to respect a few rules, like plugins must not modify the current port set by the container
(form object).
For plug-ins using the new tool box: only this new tool box is used and not QuickDraw (see
http://sources.4d.com/trac/4d_4dpluginapi/wiki/native_drawing)

4D Pack

Over the course of different versions, the most useful 4D Pack routines have been progressively integrated into 4D
itself, while those that became obsolete have been removed. 4D Pack v16 now contains only a very small number
of routines and will no longer evolve. Starting with 4D v16, the 4D Pack plug-in as a whole is deprecated and will
no longer be provided in future versions of 4D. Refer to the table below to find out the replacement solutions
available (if any) for the remaining routines.

Language: deprecated and/or removed commands

Command Replaced with
Obsolete
since

Current
status

4D Environment theme:
_o_ADD DATA
SEGMENT

- v11 Deprecated

_o_DATA SEGMENT
LIST - v11 Deprecated

Backup theme:
_o_INTEGRATE LOG
FILE INTEGRATE MIRROR LOG FILE v16 Deprecated

Compiler theme:
_o_ARRAY STRING ARRAY TEXT v12 Deprecated
_o_C_GRAPH (use SVG with the GRAPH command) v12 Deprecated
_o_C_INTEGER C_LONGINT v12 Deprecated
_o_C_STRING C_TEXT (as soon as database is in Unicode) v12 Deprecated

Data Entry theme:
_o_ADD SUBRECORD ADD RECORD in the n table of a N->1 relation v12 Deprecated
_o_MODIFY
SUBRECORD MODIFY RECORD in the n table of a N->1 relation v12 Deprecated

Form Events theme:
_o_During Replace with Form event and the appropriate event v12 Deprecated

Graphs theme:
GRAPH (using 4D Graph
Area) Use an SVG picture instead v12 Deprecated

_o_GRAPH TABLE Build the data in arrays and call GRAPH in a SVG picture v13
Disabled
since 4D
v14

Hierarchical Lists
theme:
_o_REDRAW LIST Remove in code (does nothing since v11) v11 Deprecated

Objects (Forms) theme:
_o_DISABLE
BUTTON/_o_ENABLE
BUTTON

OBJECT SET ENABLED v12 Deprecated

Pictures theme:
_o_PICTURE TYPE LIST PICTURE CODEC LIST v12 Deprecated
_o_QT COMPRESS
PICTURE CONVERT PICTURE v12 Deprecated

_o_QT COMPRESS
PICTURE FILE WRITE PICTURE FILE/PICTURE TO BLOB v12 Deprecated

_o_QT LOAD COMPRESS
PICTURE FROM FILE READ PICTURE FILE/CONVERT PICTURE v12 Deprecated

_o_SAVE PICTURE TO
FILE WRITE PICTURE FILE v12 Deprecated

Resources theme: all
commands that

write/create resources,
i.e.:
_o_ARRAY TO STRING
LIST

- v12 Deprecated

_o_Create resource file - v12 Deprecated
_o_DELETE RESOURCE - v12 Deprecated
_o_Get component
resource ID - v12 Deprecated

_o_SET PICTURE
RESOURCE - v12 Deprecated

_o_SET RESOURCE - v12 Deprecated
_o_SET RESOURCE
NAME - v12 Deprecated

_o_SET RESOURCE
PROPERTIES - v12 Deprecated

_o_SET STRING
RESOURCE - v12 Deprecated

_o_SET TEXT
RESOURCE - v12 Deprecated

SQL theme:
_o_USE EXTERNAL
DATABASE SQL LOGIN v12 Deprecated

_o_USE INTERNAL
DATABASE SQL LOGOUT v12 Deprecated

String theme:

_o_Convert case CONVERT FROM TEXT/Convert to text when
necessary. v11 Deprecated

_o_ISO to Mac Just remove the command from the method if conversion
is not necessary v11 Deprecated

_o_Mac to ISO (which means the database runs in Unicode mode) v11 Deprecated
_o_Mac to Win v11 Deprecated
_o_Win to Mac v11 Deprecated

Subrecords theme: all
commands

Replace “nnn SUBRECORD” and “nnn SUBSELECTION”
with an action on the N record or N-selection of the N-
table in a N->1 relation

v12 Deprecated

System Documents
theme:
Document type - v12 Deprecated

System Environment
theme:
_o_Font name Use font identifiers v14 Deprecated

_o_Font number QuickDraw is deprecated, so the _o_Font name and
_o_Font number commands are deprecated. v14 Deprecated

The OBJECT SET FONT command no longer accepts a
LongInt parameter for the font: this parameter is now a
String and you must specify the font name.

User Interface theme:
_o_Get platform
interface/_o_SET Can be used only for converted application; with the v12 Deprecated

interface/_o_SET
PLATFORM INTERFACE

Automatic Platform constant
v12 Deprecated

Windows theme:
_o_Open external
window

Not supported in 4D 64-bit versions v16 Deprecated

XML theme:
_o_XSLT APPLY
TRANSFORMATION

Use PHP libxslt module or the PROCESS 4D TAGS
command v14 R4 Deprecated

_o_XSLT GET ERROR Use PHP libxslt module or the PROCESS 4D TAGS
command v14 R4 Deprecated

_o_XSLT SET
PARAMETER

Use PHP libxslt module or the PROCESS 4D TAGS
command v14 R4 Deprecated

4D Pack commands:
_o_AP ShellExecute LAUNCH EXTERNAL PROCESS v11 Removed
_o_AP Save BMP 8 bits Use 4D commands of the "Pictures" theme v14 R5 Removed
_o_AP FCLOSE, _o_AP
fopen, _o_AP FPRINT,
_o_AP fread

- v14 R5 Removed

_o_AP Get file MD5 digest Generate digest v14 R5 Removed
_o_AP BLOB to print
settings BLOB to print settings v16 Deprecated

_o_AP Print settings to
BLOB Print settings to BLOB v16 Deprecated

_o_AP Is picture
deprecated GET PICTURE FORMATS v16 Deprecated

_o_AP NORMAL SCREEN,
_o_AP FULL SCREEN - v16 Deprecated

_o_AP Get field infos,
_o_AP Get table infos - v16 Deprecated

_o_AP Get tips state,
_o_AP SET TIPS STATE - v16 Deprecated

Obsolete commands renamed and hidden
For better clarity in the 4D language, starting with 4D v15, every obsolete command has been prefixed by "_o_", if
this was not already the case and are no longer available in 4D lists (code editor, type-ahead feature, etc.).
They will not be removed from existing code and will continue to work normally as long as they are supported. It is
still possible (but not recommended) to add an obsolete command in a method by simply entering its name
prefixed by "_o_"; it will be interpreted correctly.

 _o_XSLT APPLY TRANSFORMATION

_o_XSLT APPLY TRANSFORMATION (xmlSource ; xslSheet ; result {; compileSheet})

Parameter Type Description
xmlSource String,

BLOB
Name or access path of XML source document, or BLOB containing the XML source

xslSheet String,
BLOB

Name or access path of document containing XSL stylesheet, or BLOB containing the XSL stylesheet

result String,
BLOB

Name or access path of the document receiving the result of the XSLT transformation, or BLOB
receiving the result of the XSLT transformation

compileSheet Boolean True = Optimize XSLT transformation False or omitted = No optimization, remove the compiled XSL
file (if any)

Compatibility note

Starting with 4D v14 R4, XSL transformation commands are obsolete. For compatibility, they are still supported in
4D but we strongly recommend that you discontinue using them. In future versions of 4D, it will no longer be
possible to use XSLT technology. For more information, please refer to the Overview of XML Utilities Commands.

 PROCESS 4D TAGS

PROCESS 4D TAGS (inputTemplate ; outputResult {; param}{; param2 ; ... ; paramN})

Parameter Type Description
inputTemplate Text, BLOB Data containing tags to process
outputResult Text, BLOB Result from template execution
param Text, Number, Date, Time, Pointer Parameter(s) passed to template being executed

Description

The PROCESS 4D TAGS command causes the processing of 4D transformation tags contained in the
inputTemplate parameter (field or variable of the BLOB or Text type) while (optionally) inserting value(s) using the
param parameters and returns the result in outputResult. For a complete description of these tags, refer to the 4D
Transformation Tags section.
This command lets you execute a "template" type text containing tags and references to 4D expressions and/or
variables, and to produce a result depending on the execution context and/or the values passed as parameters.
For example, you can use this command to generate and save HTML pages based on semi-dynamic pages
containing 4D transformation tags (without it being necessary for 4D's Web server to be started). You can use it to
send e-mail messages in HTML format that contain processing of and/or references to data contained in the
database via the 4D Internet Commands. It is possible to process any type of data based on text, such as XML, SVG
or multi-style text.
Pass the data containing the tags to be processed in the inputTemplate parameter. This parameter can be a field or
variable of the BLOB or Text type. The Text type is usually sufficient (parameters can receive up to 2 GB of text).
Compatibility note: Beginning with version 12 of 4D, when you use BLOB type parameters, the command
automatically considers that the character set used for BLOBs is MacRoman. For better efficiency, it is strongly
recommended to use Text type parameters for which processing is carried out in Unicode mode.
All the transformation tags of 4D are supported (4DTEXT, 4DHTML, 4DSCRIPT, 4DLOOP, 4DEVAL, etc.).
Note: When using the 4DINCLUDE tag outside the framework of the Web server (Web process):

with 4D in local mode or 4D Server, the default folder is the folder containing the database structure file,
with 4D in remote mode, the default folder is the folder containing the 4D application.

The PROCESS 4D TAGS command supports an indefinite number of param parameters that can be inserted into
the executed code. As with project methods, these parameters can contain scalar values of varied types (text, date,
time, longint, real, etc.). You can also use arrays, by means of array pointers. Inside the code processed by the 4D
tags, these parameters can be accessed by means of standard arguments ($1, $2, etc.), just like in 4D methods 4D
(see example).
A dedicated set of local variables is defined in the execution context of the PROCESS 4D TAGS command. These
variables can be written or read during processing.
Compatibility note: In previous versions of 4D, local variables defined in the calling context could be accessed in
the PROCESS 4D TAGS execution context in interpreted mode. Beginning with 4D v14 R4, this is not the case
anymore.
After command execution, the outputResult parameter receives the execution result of the inputTemplate
parameter, along with the result of the processing of any 4D tags that it contains, when applicable. If
inputTemplate does not contain any 4D tags, the contents of outputResult is identical to that of inputTemplate.
The outputResult parameter may be a field or a variable, but it must be of the same type as that of the
inputTemplate parameter.
Note: This command never calls the On Web Authentication database method.

Example 1

This example loads a 'template' type document, processes the tags it contains and then stores it:

 C_BLOB($Blob_x)
 C_BLOB($blob_out)
 C_TEXT($inputText_t)
 C_TEXT($outputText_t)

 DOCUMENT TO BLOB("mytemplate.txt";$Blob_x)
 $inputText_t:=BLOB to text($Blob_x;UTF8 text without length)
 PROCESS 4D TAGS($inputText_t;$outputText_t)
 TEXT TO BLOB($outputText_t;$blob_out;UTF8 text without length)
 BLOB TO DOCUMENT($document;$blob_out)

Example 2

This example generates a text using data of the arrays:

 ARRAY TEXT($array;2)
 $array{1}:="hello"
 $array{2}:="world"
 $input:="<!--#4DEVAL $1-->"
 $input:=$input+"<!--#4DLOOP $2-->"
 $input:=$input+"<!--#4DEVAL $2->{$2->}--> "
 $input:=$input+"<!--#4DENDLOOP-->"
 PROCESS 4D TAGS($input;$output;"elements = ";->$array)
 // $output = "elements = hello world"

 GET PICTURE FORMATS

GET PICTURE FORMATS (picture ; codecIDs)

Parameter Type Description
picture Picture Picture field or variable to analyze
codecIDs Text array Picture codec IDs

Description

The GET PICTURE FORMATS command returns an array of all the codec IDs (picture formats) contained in the
picture passed as parameter. A 4D picture (field or variable) can contain the same picture encoded in different
formats, such as PNG, BMP, GIF, etc.
In the picture parameter, you pass a picture field or a picture variable whose included formats you want to be
returned in the codecIDs array.
The codec IDs returned are established by 4D in exactly the same way as for the PICTURE CODEC LIST command.
They can be returned in the following forms:

As extensions (for example, “.gif”)
As Mime types (for example, “image/jpeg”)
As 4-character QuickTime codes

Notes:

The following codecs, handled internally by 4D, are always returned as extensions: JPEG, PNG, TIFF, GIF,
BMP, SVG, PDF, EMF.
4-character QuickTime codes may be returned in databases where the QuickTime support compatibility option
has been set (using the SET DATABASE PARAMETER command). However, QuickTime is no longer
supported in 4D and we do not recommend using QuickTime codecs.

For more information about picture codec IDs, refer to the Pictures section.

Example

You want to know the picture formats stored in a field for the current record:

 ARRAY TEXT($aTPictureFormats;0)
 //Get all the formats saved
 GET PICTURE FORMATS([Employees]Photo;$aTPictureFormats)

 _o_QT COMPRESS PICTURE

_o_QT COMPRESS PICTURE (picture ; method ; quality)

Parameter Type Description
picture Picture Picture to be compressed

Compressed picture
method String 4-character string compression method
quality Longint Compression quality (1..1000)

Compatibility note

This command calls for obsolete mechanisms and must be replaced by the CONVERT PICTURE command.

 CONVERT PICTURE

CONVERT PICTURE (picture ; codec {; compression})

Parameter Type Description
picture Picture Picture to be converted

Converted picture
codec String Picture Codec ID
compression Real Quality of compression

Description

The CONVERT PICTURE command converts picture into a new type.
The codec parameter indicates the type of picture to be generated. A Codec can be an extension (for example,
“.gif”) or a Mime type (for example, “image/jpeg”). You can get a list of Codecs that are available using the
PICTURE CODEC LIST command.
If the picture field or variable is a compound type (if, for example, it is the result of a copy-paste action), only the
information corresponding to the codec type are preserved in the resulting picture.
Note: If the type of codec requested is the same as the original type of the picture, no conversion is carried out and
the picture is returned "as is" (except when the compression parameter is used, see below).
The optional compression parameter, if passed, can be used to specify the compression quality to be applied to the
resulting picture when a compatible Codec is used. In compression, pass a value between 0 and 1 to specify the
quality of the compression, where 0 is the most mediocre quality (high compression) and 1 the best quality (low
compression). This parameter is only taken into account when the Codec supports compression (for example JPEG
or HDPhoto) and is supported by the WIC and ImageIO APIs. For more information about picture management
APIs in 4D, please refer to the Pictures section. By default, if you omit the compression parameter, the best quality
is applied (compression =1).

Example 1

Conversion of the vpPhoto picture to the jpeg format:

 CONVERT PICTURE(vpPhoto;".jpg")

Example 2

Conversion of a picture with 60% quality:

 CONVERT PICTURE(vPicture;".JPG";0.6)

 Maintenance and security center

Overview
Information page
Activity analysis page
Verify page
Backup page
Compact page
Rollback page
Restore page
Repair page

 SET DATABASE PARAMETER

SET DATABASE PARAMETER ({aTable ;} selector ; value)

Parameter Type Description
aTable Table Table for which to set the parameter or, Default table if this parameter is omitted
selector Longint Code of the database parameter to modify
value Real, String Value of the parameter

Description

The SET DATABASE PARAMETER command allows you to modify various internal parameters of the 4D database.
The selector designates the database parameter to modify. 4D offers predefined constants, which are located in the
“Database Parameters” theme. The following table lists each constant, describes its scope and indicates whether
any changes made are kept between two sessions:

Constant Type Value Comment

Direct2D
disabled

Longint 0 See selector 69 (Direct2D Status)

Direct2D
hardware

Longint 1 See selector 69 (Direct2D Status)

Direct2D
software

Longint 3 See selector 69 (Direct2D Status)

Minimum
Web process Longint 6

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Possible values: 0 -> 32 767
Description: Minimum number of Web processes to maintain in non-
contextual mode with 4D in local mode and 4D Server. By default, the value is
0 (see below).

Maximum
Web process Longint 7

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Possible values: 0 -> 32 767
Description: Maximum number of Web processes to maintain in non-
contextual mode with 4D in local mode and 4D Server. By default, the value is
10.
In non-contextual mode, for the Web server to be reactive, 4D delays the Web
processes for 5 seconds and reuses them to execute any possible future HTTP
queries. In terms of performance, this is actually more advantageous than
creating a new process for each query. Once a Web process is reused, it is
delayed again for 5 seconds. When the maximum number of Web processes
has been reached, the web process is then aborted. If no query has been
attributed to a Web process within the 5 second delay, the process is aborted,
except if the minimum number of Web processes has been reached (in which
case the process is delayed again).
These parameters allow you to adjust how your Web server operates in
relation to the number of requests and the memory available as well as other
parameters.

_o_Web
conversion
mode

Longint 8 **** Selector disabled ****

_o_Database
cache size Longint 9

Scope: 4D application
Kept between two sessions: -
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the Get cache size command.

4D Local
mode
scheduler

Longint 10
Scope: 4D application
Kept between two sessions: Yes
Description: see selector 12

4D Server
scheduler Longint 11

Scope: 4D application
Kept between two sessions: Yes
Description: see selector 12
Scope: 4D application
Kept between two sessions: Yes
Possible values: for selectors 10, 11 and 12, the value parameter is
expressed in hexadecimal 0x00aabbcc as follows:
aa = minimum number of ticks per call to the system (0 to 100 included).
bb = maximum number of ticks per call to the system (0 to 100 included).
cc = number of ticks between calls to the system (0 to 20 included).
If one of the values is out of range, 4D sets it to its maximum. You can pass
one of the following preset standard values in the value parameter:

value = -1: maximum priority allocated to 4D,

4D Remote
mode
scheduler

Longint 12

value = -2: average priority allocated to 4D,
value = -3: minimum priority allocated to 4D.

Description: This parameter allows you to dynamically set the 4D system
internal calls. Depending on the Selector, the scheduler value will be set for:

4D local mode when the command is called from a 4D single-user
application (selector=10).
4D Server when the command is called from 4D Server (selector=11).
4D remote mode when the command is called from a 4D connected to 4D
Server (selector=12).

Note: The operation of selector 12 (4D Remote Mode Scheduler) differs
according to whether the SET DATABASE PARAMETER command is executed
on the server machine or on the client machine:
- If the command is executed on the server machine, the new value will be
applied to all the client machines that connect to it subsequently.
- If the command is executed on the client machine, the new value is applied
to the client machine immediately as well as to all the client machines that
connect to the server subsequently.
You can use this operation to implement a dynamic and individualized
management of priority for each client machine. This consists in executing the
command initially on the client machine to be configured, then a second time
on the server machine using the default value, which will then be used for the
client machines that connect to it subsequently.
This operation is in effect in 4D starting with versions 6.8.6, 2003.3 and 2004.
Warning: Configuring these selectors inappropriately can cause serious
degradation of application performance. It is recommended to only modify the
default values with full knowledge of the facts.

4D Server
timeout Longint 13

Scope: 4D application if value positive
Kept between two sessions: Yes if value positive
Possible values: 0 -> 32 767
Description: Value of the 4D Server timeout. The default 4D Server timeout
value is defined on the "Client-Server/Network options" page of the Database
settings dialog box on the server side.
The server timeout sets the maximum period "authorized" to wait for a client
response, for example when it is executing a blocking operation. After this
period, 4D Server disconnects the client. The 4D Server Timeout selector
allows you to set, in the corresponding value parameter, a new timeout
expressed in minutes. This feature is particularly useful to increase the timeout
before executing a blocking and time-consuming operation on the client, such
as printing a large number of pages, which can cause an unexpected timeout.
You also have two options:

If you pass a positive value in the value parameter, you set a global and
permanent timeout: the new value is applied to all process and is stored
in the preferences of the 4D application (equivalent to change in the
Preferences dialog box).
If you pass a negative value in the value parameter, you set a local and
temporary timeout: The new value is applied to the calling process only
(the other processes keep the default values) and is reset to default as
soon as the server receives any signal of activity from the client ̶ for
example, when the operation is finished. This option is useful for
managing long operations initiated by 4D plug-ins.

To set the "No timeout" option, pass 0 in value. See example 1.
Scope (legacy network layer only): 4D application if value positive

4D Remote
mode
timeout

Longint 14

Kept between two sessions: Yes if value positive
Description: To be used in very specific cases. Value of the timeout granted
by the remote 4D machine to the 4D Server machine. The default timeout
value used by 4D in remote mode is set on the "Client-Server/Network
options" page of the Database settings dialog box on the remote machine.
The 4D Remote mode timeout selector is only taken into account if you are
using the legacy network. It is ignored when the ServerNet layer is activated:
this setting is entirely managed by the 4D Server timeout (13) selector.

Port ID Longint 15

Scope: 4D local, 4D Server
Kept between two sessions: No
Description: TCP port ID used by the 4D Web server with 4D in local mode
and 4D Server. The default value, which can be set on the
"Web/Configuration" page of the Preferences dialog box, is 80. You can use
the constants of the TCP Port Numbers theme for the value parameter.
The Port ID selector is useful for 4D Web Servers compiled and merged with
4D Desktop (in which there is no access to the Design mode). For more
information about the TCP port ID, refer to the Web Server Settings section.

IP Address
to listen Longint 16

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

Character
set Longint 17

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

Max
concurrent
Web
processes

Longint 18

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

Client
minimum
Web process

Longint 19

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 6
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in
remote mode.

Client
maximum
Web process

Longint 20

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 7
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in
remote mode.

Client Max
Web
requests size

Longint 21

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 27
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in

remote mode.

Client port
ID

Longint 22

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 15
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in
remote mode.

Client IP
address to
listen

Longint 23

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 16
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in
remote mode.

Client
character set Longint 24

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 17
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in
remote mode.

Client max
concurrent
Web proc

Longint 25

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: See selector 18
Description: Used to specify this parameter for all the remote 4D machines
used as Web servers. The values defined using these selectors are applied to
all the remote machines used as Web servers. If you want to define values
only for certain remote machines, use the Preferences dialog box of 4D in
remote mode.

Maximum
Web
requests size

Longint 27

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

4D Server
log
recording

Longint 28

Scope: 4D Server, 4D remote
Kept between two sessions: No
Possible values: 0 or from 1 to X (0 = do not record, 1 to X = sequential
number, added to the file name).
Description: Starts or stops the recording of standard requests received by
4D Server (excluding Web requests). By default, the value is 0 (requests not
recorded).
4D Server lets you record each request received by the server machine in a log
file. When this mechanism is enabled, two files are created in the Logs folder
of the database, next to the database structure file.They are named
4DRequestsLog_X.txt and 4DRequestsLog_ProcessInfo_X.txt, where X is the
sequential number of the log. Once the file 4DRequestsLog has reached a size
of 10 MB, it is closed and a new one is generated, with an incremented
sequential number. If a file of the same name already exists, it is replaced
directly. You can set the starting number of the sequence using the value
parameter.
These text files store various information concerning each request in a simple

tabbed format: time, process number, size of request, processing duration,
etc. This information is particularly useful during the development phase of the
application or for statistical purposes. It can be imported, for example, into a
spreadsheet software in order to be processed.

_o_Web Log
recording

Longint 29

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

Client Web
log
recording

Longint 30

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: 0 = Do not record (default), 1 = Record in CLF format, 2 =
Record in DLF format, 3 = Record in ELF format, 4 = Record in WLF format.
Description: Starts or stops the recording of Web requests received by the
Web servers of all the client machines. By default, the value is 0 (requests not
recorded).
The operation of this selector is identical to that of selector 29; however, it
applies to all the 4D remote machines used as Web servers. The "logweb.txt"
file is, in this case, automatically placed in the Logs subfolder of the remote 4D
database folder (cache folder). If you only want to set values for certain client
machines, use the Preferences dialog box of 4D in remote mode.

Table
sequence
number

Longint 31

Scope: 4D application
Kept between two sessions: Yes
Possible values: Any longint value.
Description: This selector is used to modify or get the current unique number
for records of the table passed as parameter. "Current number" means "last
number used": if you modify this value using SET DATABASE PARAMETER,
the next record will be created with a number that consists of the value passed
+ 1. This new number is the one returned by the Sequence number
command as well in any field of the table to which the "Autoincrement"
property has been assigned in the Structure editor or via SQL.
By default, this unique number is set by 4D and corresponds to the order of
record creation. For additional information, refer to the documentation of the
Sequence number command.

_o_Real
display
precision

Longint 32 **** Selector disabled ****

Scope: 4D application
Kept between two sessions: No
Description: Starts or stops the sequential recording of events occurring at
the 4D programming level in the 4DDebugLog file, which is automatically
placed in the Logs subfolder of the database, next to the structure file. A new,
more compact, tabbed text format is used in the event log file
"4DDebugLog[_n].txt" starting with 4D v14 (where _n is the segment number
of the file).
Possible values: Longint containing a bit field: value =
bit1(1)+bit2(2)+bit3(4)+bit4(8)+…).
- Bit 1 (value 1) requests to enable the file (note that any other non-null value
also enables it as well)
- Bit 2 (value 2) requests call parameters to methods and commands.
- Bit 3 (value 4) enables new tabbed format.
- Bit 4 (value 8) disables immediate writing of each operation on disk (enabled
by default). Immediate writing is slower but more effective, for example for
investigating causes of a crash. If you disable this mode, the file contents are
more compact and are generated more quickly.
- Bit 5 (value 16) disables recording of plug-in calls (enabled by default).

Debug log
recording

Longint 34

- Bit 5 (value 16) disables recording of plug-in calls (enabled by default).
In the (former) non-tabbed format, execution times are expressed in
milliseconds and the "< ms" value is displayed when an operation lasts less
than one millisecond.
In the new tabbed format, execution times are expressed in microseconds.
Examples:
SET DATABASE PARAMETER (34;1) // enables mode v13 file without
parameters, with runtimes
SET DATABASE PARAMETER (34;2) // enables mode v13 file with parameters
and runtimes
SET DATABASE PARAMETER (34;2+4) // enables file with v14 format, with
parameters and runtimes
SET DATABASE PARAMETER (34;0) // disables file
To avoid having a file record too much information, you can restrict the 4D
commands that are examined by using selector 80, Log Command list.
This option can be enabled for any type of 4D application (4D all modes, 4D
Server, 4D Volume Desktop), in interpreted or compiled mode.
Note: This option is provided solely for the purpose of debugging and must
not be put into production since it may lead to deterioration of the application
performance and saturation of the hard disk. For more information about this
format and on the use of the 4DDebugLog[_n].txt file, please contact the
Technical Support of 4D Inc.

Client Server
port ID Longint 35

Scope: Database
Kept between two sessions: Yes
Possible values: 0 to 65535
Description: TCP port number where the 4D Server publishes the database
(bound for 4D remote machines). By default, the value is 19813.
Customizing this value means that several 4D client-server applications can be
used on the same machine with the TCP protocol; in this case, you must
indicate a different port number for each application.
The value is stored in the database structure file. It can be set with 4D in local
mode but is only taken into account in client-server configuration.
When you modify this value, it is necessary to restart the server machine in
order for the new value to be taken into account.

Invert
objects Longint 37

Scope: Database
Kept between two sessions: Yes
Possible values: 0, 1 or 2 (0 = mode disabled, 1 = automatic mode, 2 =
mode enabled).
Description: Configuration of the "object inversion" mode which is used to
invert forms, objects, menu bars, and so on, in Application mode when the
database is displayed under Windows in a right-to-left language. This mode
can also be configured on the Interface/Right-to-left languages page of the
Database Settings.

Value 0 indicates that the mode is never enabled, regardless of the
system configuration (corresponds to the Never value in the Database
Settings).
Value 1 indicates that the mode is enabled or disabled depending on the
system configuration (corresponds to the Automatic value in the
Database Settings).
Value 2 indicates that the mode is enabled, regardless of the system
configuration (corresponds to the Always value in the Database Settings).

For more information, refer to the Design Reference manual of 4D.

HTTPS Port
ID Longint 39

Scope: 4D local, 4D Server
Kept between two sessions: Yes
Description: Constant obsolete (kept for compatibility reasons only). We now

ID
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

Client HTTPS
port ID Longint 40

Scope: All 4D remote machines
Kept between two sessions: Yes
Possible values: 0 to 65535
Description: TCP port number used by the Web servers of the client
machines for secure connections via SSL (HTTPS protocol). By default, the
value is 443 (standard value).
This selector can be used to modify by programming the TCP port used by the
Web servers of the client machines for secure connections via SSL (HTTPS
protocol). By default, the value is 443 (standard value).
This selector operates exactly the same way as selector 39; however, it applies
to all the 4D remote machines used as Web servers. If you only want to
modify the value of certain specific client machines, use the Preferences dialog
box of the remote 4D.

Unicode
mode Longint 41

Scope: Database
Kept between two sessions: Yes
Possible values: 0 (compatibility mode) or 1 (Unicode mode)
Description: Current database operating mode, with regards to the character
set. 4D supports the Unicode character set but can function in “compatibility”
mode (based on the Mac ASCII character set). By default, converted databases
are executed in compatibility mode (0) and databases created with version 11
or higher are executed in Unicode mode. The execution mode can be
controlled via an option in the Preferences and can also be read or (for testing
purposes) modified via this selector. Modifying this option requires the
database to be restarted in order for it to be taken into account. Note that
within a component it is not possible to modify this value, but only to read it.

SQL
Autocommit Longint 43

Scope: Database
Kept between two sessions: Yes
Possible values: 0 (deactivation) or 1 (activation)
Description: Activation or deactivation of the SQL auto-commit mode. By
default, the value is 0 (deactivated mode)
The auto-commit mode is used to strengthen the referential integrity of the
database. When this mode is active, all SELECT, INSERT, UPDATE and
DELETE (SIUD) queries are automatically included in ad hoc transactions
when they are not already executed within a transaction. This mode can also
be set in the Preferences of the database.

SQL Engine
case
sensitivity

Longint 44

Scope: Database
Kept between two sessions: Yes
Possible values: 0 (case not taken into account) or 1 (case-sensitive)
Description: Activation or deactivation of case-sensitivity for string
comparisons carried out by the SQL engine.
By default, the value is 1 (case-sensitive): the SQL engine differentiates
between upper and lower case and between accented characters when
comparing strings (sorts and queries). For example “ABC”= “ABC” but “ABC”
“Abc” and "abc" # "âbc." In certain cases, for example so as to align the
functioning of the SQL engine with that of the 4D engine, you may wish for
string comparisons to not be case-sensitive (“ABC”=“Abc"="âbc").
This option can also be set on the SQL page of the Database settings.
Scope: Remote 4D machine
Kept between two sessions: No
Possible values: 0 or from 1 to X (0 = do not record, 1 to X = sequential
number, attached to file name).
Description: Starts or stops recording of standard requests carried out by the
4D client machine that executed the command (excluding Web requests). By
default, the value is 0 (no recording of requests).

Client log
recording

Longint 45

default, the value is 0 (no recording of requests).
4D lets you record the log of requests carried out by the client machine. When
this mechanism is activated, two files are created on the client machine, in the
Logs subfolder of the local folder of the database. They are named
4DRequestsLog_X.txt and 4DRequestsLog_ProcessInfo_X.txt, where X is the
sequential number of the log. Once the file 4DRequestsLog has reached a size
of 10 MB, it is closed and a new one is generated, with an incremented
sequential number. If a file with the same name already exists, it is directly
replaced. You can set the starting number for the sequence using the value
parameter.
These text files store various information concerning each request in a simple
tabbed format: time, process number, size of request, processing duration,
etc. This information is particularly useful during the development phase of the
application or for statistical purposes

Query by
formula on
server

Longint 46

Scope: Current table and process
Kept between two sessions: No
Possible values: 0 (use database configuration), 1 (execute on client) or 2
(execute on server)
Description: Execution location of QUERY BY FORMULA and QUERY
SELECTION BY FORMULA commands for the table passed in the parameter.
When using a database in client-server mode, the query "by formula"
commands can be executed either on the server or on the client machine:

In databases created with 4D v11 SQL, these commands are executed on
the server.
In converted databases, these commands are executed on the client
machine, as in previous versions of 4D.
In converted databases, a specific preference (Application/Compatibility
page) can be used to globally modify the execution location of these
commands.

This difference in execution location influences not only application
performance (execution on the server is usually faster) but also programming.
In fact, the value of the components of the formula (in particular variables
called via a method) differ according to the execution context. You can use this
selector to punctually adapt the operation of your application.
If you pass 0 in the value lʼparameter, the execution location of query "by
formula" commands will depend on the database configuration: in databases
created with 4D v11 SQL, these commands will be executed on the server. In
converted databases, they will be executed on the client machine or the server
according to the database preferences. Pass 1 or 2 in value to "force" the
execution of these commands, respectively, on the client or on the server
machine.
Refer to example 4.
Note: If you want to be able to enable "SQL type" joins (see the QUERY BY
FORMULA Joins selector), you must always execute formulas on the server so
that they have access to the records. Be careful, in this context, the formula
must not contain any calls to a method, otherwise it will automatically be
switched to the remote machine.

Order by
formula on
server

Longint 47

Scope: Current table and process
Kept between two sessions: No
Possible values: 0 (use database configuration), 1 (execute on client) or 2
(execute on server)
Description : Execution location of ORDER BY FORMULA command for the
table passed in the parameter.
When using a database in client-server mode, this command can be executed
either on the server or on the client machine. This selector can be used to
specify the execution location of this command (server or client). This mode

server
can also be set in the database preferences. For more information, please refer
to the description of selector 46, Query By Formula On Server.
Note: If you want to be able to enable "SQL type" joins (see the QUERY BY
FORMULA Joins selector), you must always execute formulas on the server so
that they have access to the records. Be careful, in this context, the formula
must not contain any calls to a method, otherwise it will automatically be
switched to the remote machine.

Auto
synchro
resources
folder

Longint 48

Scope: 4D remote machine
Kept between two sessions: No
Possible values: 0 (no synchronization), 1 (auto synchronization) or 2 (ask).
Description: Dynamic synchronization mode for Resources folder of 4D client
machine that executed the command with that of the server.
When the contents of the Resources folder on the server has been modified or
a user has requested synchronization (for example via the resources explorer
or following the execution of the SET DATABASE LOCALIZATION
command), the server notifies the connected client machines.
Three synchronization modes are then possible on the client side. The Auto
Synchro Resources Folder selector is used to specify the mode to be used by
the client machine for the current session:

0 (default value): no dynamic synchronization (synchronization request is
ignored)
1: automatic dynamic synchronization
2: display of a dialog box on the client machines, with the possibility of
allowing or refusing synchronization.

The synchronization mode can also be set globally in the application
Preferences.

Query by
formula joins Longint 49

Scope: Current process
Kept between two sessions: No
Possible values: 0 (use database configuration), 1 (always use automatic
relations) or 2 (use SQL joins if possible).
Description: Operating mode of the QUERY BY FORMULA and QUERY
SELECTION BY FORMULA commands relating to the use of "SQL joins."
In databases created starting with version 11.2 of 4D v11 SQL, these
commands carry out joins based on the SQL joins model. This mechanism can
be used to modify the selection of a table according to a query carried out on
another table without these tables being connected by an automatic relation
(necessary condition in previous versions of 4D).
The QUERY BY FORMULA Joins selector lets you specify the operating mode of
the query by formula commands for the current process:

0: Uses the current settings of the database (default value). In databases
created starting with version 11.2 of 4D v11 SQL, "SQL joins" are always
activated for queries by formula. In converted databases, this mechanism
is not activated by default for compatibility reasons but can be
implemented via a preference.
1: Always use automatic relations (= functioning of previous versions of
4D). In this mode, a relation is necessary in order to set the selection of a
table according to queries carried out on another table. 4D does not do
"SQL joins."
2: Use SQL joins if possible (= default operation of databases created in
version 11.2 and higher of 4D v11 SQL). In this mode, 4D establishes
"SQL joins" for queries by formula when the formula is suited for it (with
two notable exceptions, see the description of the QUERY BY FORMULA
or QUERY SELECTION BY FORMULA command).

Note: With 4D in remote mode, "SQL joins" can only be used if the formulas
are executed on the server (they must have access to the records). To
configure where formulas are to be executed, please refer to selectors 46 and
47.

HTTP
compression
level

Longint 50

Scope: 4D application
Kept between two sessions: No
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

HTTP
compression
threshold

Longint 51

Scope:4D application
Kept between two sessions: No
Description: Constant obsolete (kept for compatibility reasons only). We now
recommend using the WEB SET OPTION and WEB GET OPTION commands
for configuring the HTTP server.

Server base
process
stack size

Longint 53

Scope: 4D Server
Kept between two sessions: No
Possible values: Positive longint.
Description: Size of the stack allocated to each preemptive system process on
the server, expressed in bytes. The default size is determined by the system.
Preemptive system processes (processes of the 4D client base process type)
are loaded to control the main 4D client processes. The size allocated by
default to the stack of each preemptive process allows a good ease of
execution but may prove to be consequential when very large numbers of
processes (several hundred) are created.
For optimization purposes, this size can be reduced considerably if the
operations carried out by the database allow for it (for example if the database
does not carry out sorts of large quantities of records). Values of 512 or even
256 KB are possible. Be careful, under-sizing the stack is critical and can be
harmful to the operation of 4D Server. Setting this parameter should be done
with caution and must take the database conditions of use into account
(number of records, type of operations, etc.).
In order to be taken into account, this parameter must be executed on the
server machine (for example in the On Server Startup Database Method).

Idle
connections
timeout

Longint 54

Scope:4D application unless value is negative
Kept between two sessions: No
Possible values: Whole value expressing a duration in seconds. The value
can be positive (new connections) or negative (existing connections). By
default, the value is 20.
Description: Maximum period of inactivity (timeout) for connections to both
the 4D database engine and the SQL engine, as well as, in ServerNet mode
(new network layer), to the 4D application server. When an idle connection
reaches this limit, it is automatically put on standby, which freezes the
client/server session and closes the network socket. In the server
administration window, the state of the user process is indicated as
"Postponed". This functioning is completely transparent for the user: as soon
as there is new activity on the connection which is on standby, the socket is
automatically reopened and the client/server session is restored.
On the one hand, this setting lets you save resources on the server:
connections on standby close the socket and free up a process on the server.
On the other hand, it lets you avoid losing connections due to the closing of
idle sockets by the firewall. For this, the timeout value for idle connections
must be lower than that of the firewall in this case.
If you pass a positive value in value, it applies to all new connections in all the
processes. If you pass a negative value, it applies to connections that are open
in the current process. If you pass 0, idle connections are not subjected to a
timeout.

This parameter can be set on both the server and client side. If you pass two
different durations, the shorter one is taken into account. Usually, you do not
need to change this value.

PHP
interpreter
IP address

Longint 55

Scope: 4D application
Kept between two sessions: No
Values: Formatted string of the type "nnn.nnn.nnn.nnn" (for example
"127.0.0.1").
Description: IP address used locally by 4D to communicate with the PHP
interpreter via FastCGI. By default, the value is "127.0.0.1". This address must
correspond to the machine where 4D is located. This parameter can also be
set globally for all the machines via the Database Settings.
For more information about the PHP interpreter, please refer to the Design
Reference manual.

PHP
interpreter
port

Longint 56

Scope: 4D application
Kept between two sessions: No
Values: Positive long integer type value. By default, the value is 8002.
Description: Number of the TCP port used by the PHP interpreter of 4D. This
parameter can also be modified globally for all the machines via the Database
Settings. For more information about the PHP interpreter, please refer to the
Design Reference manual.

PHP number
of children Longint 57

Scope: 4D application
Kept between two sessions: No
Values: Positive long integer type value. By default, the value is 5.
Description: Number of child processes to be created and maintained locally
by the PHP interpreter of 4D. For optimization reasons, the PHP interpreter
creates and uses a set (pool) of system processes called "child processes" for
processing script execution requests. You can vary the number of child
processes according to the needs of your application. This parameter can also
be modified globally for all the machines via the Database Settings. For more
information about the PHP interpreter, please refer to the Design Reference
manual.
Note: Under Mac OS, all the child processes share the same port. Under
Windows, each child process uses a specific port number. The first number is
the one set for the PHP interpreter; the other child processes increment the
first one. For example, if the default port is 8002 and you launch 5 child
processes, they will use ports 8002 to 8006.

PHP max
requests Longint 58

Scope: 4D application
Kept between two sessions: No
Values: Positive long integer type value. By default, the value is 500.
Description: Maximum number of requests accepted by the PHP interpreter.
When this maximum number is reached, the interpreter returns errors of the
"server busy" type. For security or performance reasons, you can modify this
value. This parameter can also be modified globally for all the machines via the
Database Settings. For more information about this parameter, please refer to
the FastCGI-PHP documentation.
Note: On the 4D side, these parameters are applied dynamically; it is not
necessary to exit 4D in order for them to be taken into account. On the other
hand, if the PHP interpreter is already launched, it will be necessary to exit and
relaunch it in order for these modifications to be taken into account.

PHP use

Scope: 4D application
Kept between two sessions: No
Values : 0 = use internal interpreter, 1 = use external interpreter
Description: Value indicating whether PHP requests in 4D are sent to the
internal interpreter provided by 4D or to an external interpreter. By default
the value is 0 (use of interpreter provided by 4D). If you want to use your own
PHP interpreter, for example in order to use additional modules or a specific

external
interpreter

Longint 60
PHP interpreter, for example in order to use additional modules or a specific
configuration, pass 1 in value. In this case, 4D does not launch its internal
interpreter in the case of PHP requests.
The custom PHP interpreter must have been compiled in FastCGI and be
located on the same machine as the 4D engine. Note that in this case, you
must manage the interpreter entirely; it will not be started nor stopped by 4D.
This parameter can also be modified globally for all the machines via the
Database Settings.

Maximum
temporary
memory size

Longint 61

Scope: 4D application
Kept between two sessions: No
Possible values: Positive longint.
Description: Maximum size of temporary memory that 4D can allocate to
each process, expressed in MB. By default, the value is 0 (no maximum size).
4D uses a special temporary memory dedicated to indexing and sorting
operations. This memory is intended to preserve the "standard" cache
memory during massive operations. It is activated only when needed. By
default, the size of the temporary memory is limited only by the resources
available (according to the system memory configuration).
This mechanism is suitable for most applications. However, in certain specific
contexts, more particularly when a client-server application simultaneously
carries out a large number of sequential sorts, the size of the temporary
memory can increase critically, to the point where it can render the system
unstable. In this context, setting a maximum size for the temporary memory
allows you to preserve proper functioning of the application. In return, the
running speed might be affected: when the maximum size is reached for a
process, 4D uses disk files which may slow down processing. For specific
needs such as those described above, a maximum size of around 50 MB is
generally a good compromise. However, the ideal value will need to be
determined according to the specificities of the application and will generally
be the result of real-time volumetric testing.

SSL cipher
list String 64

Scope: 4D application
Kept between two sessions: No
Possible values: Sequence of strings separated by colons (for example "RC4-
MD5:RC4-64-MD5:....")
Description: Cipher list used by 4D for the secure protocol. This list modifies
the priority of ciphering algorithms implemented by 4D. For example, you can
pass the following string in the value parameter:
"AES:ALL:!aNULL:!eNULL:+RC4:@STRENGTH". For a complete description of
the syntax for the ciphers list, refer to the ciphers page of the OpenSSL site.
This setting applies to the entire 4D application (it concerns the HTTP server,
SQL server, client/server connections, as well as the HTTP client and all the 4D
commands that make use of the secure protocol) but it is temporary (it is not
maintained between sessions).
When the cipher list has been modified, you will need to restart the server
concerned in order for the new settings to be taken into account.
To reset the cipher list to its default value (stored permanently in the SLI file),
call the SET DATABASE PARAMETER command and pass an empty string
("") in the value parameter.
Note: With the Get database parameter command, the cipher list is
returned in the optional stringValue parameter and the return parameter is
always 0.

Scope: 4D application
Kept between two sessions: No
Possible values: Positive longint > 1.
Description: Minimum size of memory to release from the database cache

Cache
unload
minimum
size

Longint 66

when the engine needs to make space in order to allocate an object to it (value
in bytes).
The purpose of this selector is to reduce the number of times that data is
released from the cache in order to obtain better performance. You can vary
this setting according to the size of the cache and that of the blocks of data
being handled in your database.
By default, if this selector is not used, 4D unloads at least 10% of the cache
when space is needed.

Direct2D
status Longint 69

Scope: 4D application
Kept between two sessions: No
Description: Activation mode to implement Direct2D under Windows.
Possible values: One of the following constants (mode 3 by default):
Direct2D Disabled (0): Direct2D mode is not enabled and the database
functions in the previous mode (GDI/GDIPlus).
Direct2D Hardware (1): Use Direct2D as graphics hardware context for entire
4D application. If this context is not available, use Direct2D graphics software
context (except under Vista, in which case GDI/GDIPlus mode is used for
better performance).
Direct2D Software (3) (Default mode): Beginning with Windows 7, use
Direct2D graphics software context for entire 4D application. Under Vista,
GDI/GDIPlus mode is used for better performance.
Compatibility note: Starting with 4D v14, hybrid modes are disabled and
redirected to available modes (the former mode 2 is equivalent to 1; former
modes 4 and 5 are equivalent to mode 3).

Direct2D get
active status Longint 74

Note: You can only use this selector with the Get database parameter
command and its value cannot be set.
Description: Returns active implementation of Direct2D under Windows.
Possible values: 0, 1, 2, 3, 4 or 5 (see values of selector 69). The value
returned depends on the availability of Direct2D, the hardware and the quality
of Direct2D support by the operating system.
For example, if you execute:

 SET DATABASE PARAMETER(Direct2D status;Direct2D Hardware)
 $mode:=Get database parameter(Direct2D get active status)

- On Windows 7 and higher, $mode is set to 1 when the system detects
hardware compatible with Direct2D; otherwise, $mode is set to 3 (software
context).
- On Windows Vista, $mode is set to 1 when the system detects hardware
compatible with Direct2D; otherwise, $mode is set to 0 (disabling of
Direct2D).
- On Windows XP, $mode is always set to 0 (not compatible with Direct2D).

Diagnostic
log
recording

Longint 79

Scope: 4D application
Kept between two sessions: No
Possible values: 0 or 1 (0 = do not record, 1 = record)
Description: Starts or stops recording of the 4D diagnostic file. By default,
the value is 0 (do not record).
4D can continuously record a set of events related to the internal application
operation into a diagnostic file. Information contained in this file is intended for
the development of 4D applications and can be analyzed with the help of the
4D tech support. When you pass 1 in this selector, a diagnostic file, named
DatabaseName_X.txt, is automatically created (or opened) in the database
Logs folder. Once this file reaches a size of 10 MB, it is closed and a new file
named DatabaseName_X.txt is generated, with an incremented sequence
number X.
Note that you can include custom information in this file using the LOG EVENT

command.

Log
command
list

String 80

Scope: 4D application
Kept between two sessions: No
Possible values: String containing a list of 4D command numbers to record
(separated by semi-colons) or "all" to record all the commands or "" (empty
string) to record none of them.
Description: List of 4D commands to record in the debugging file (see
selector 34, Debug Log Recording). By default, all 4D commands are
recorded.
This selector restricts the quantity of information saved in the debugging file
by limiting the 4D commands whose execution you want to record. For
example, you can write:

 SET DATABASE PARAMETER(Log command list;"277;341") //Record
only the QUERY and QUERY SELECTION commands

Spellchecker Longint 81

Scope: 4D application
Kept between two sessions: No
Possible values: 0 (default) = native OS X spellchecker (Hunspell disabled), 1
= Hunspell spellcheck enabled.
Description: Enables the Hunspell spellcheck under OS X. By default, the
native spellchecker is enabled on this platform. You may prefer to use the
Hunspell spellcheck, for example, in order to unify the interface for your cross-
platform applications (under Windows, only the Hunspell spellcheck is
available). For more information, refer to Support of Hunspell dictionaries.

QuickTime
support Longint 82

Scope: 4D application
Kept between two sessions: Yes
Possible values: 0 (default) = QuickTime disabled, 1 = QuickTime enabled.
Description: In 4D starting with v14, by default QuickTime codecs are no
longer supported. For compatibility, you can use this selector to re-enable
them in your database. Modification of this option requires that the database
be restarted. Nevertheless, you should note that in future versions of 4D,
QuickTime support is permanently removed.

JSON use
local time Longint 85

Scope: Current process
Kept between two sessions: No
Possible values: 0 = ignore local time zone, 1 (default) = take time zone into
account.
Description: By default, 4D dates converted to JSON format take the local
time zone into account. For example, converting the date !23/08/2013! gives
you "2013-08-22T22:00:00Z" in JSON format when the operation is
performed in France during Daylight Savings Time (GMT+2). This principle
conforms to the standard operation of JavaScript.
This can be a source of errors when you want to send JSON date values to
someone in a different time zone. This is the case, for example, when you
export a table using Selection to JSON in France that is meant to be
reimported in the US using JSON TO SELECTION. By default, since dates are
re-interpreted in each time zone, the values stored in the database will be
different. In this case, you can modify the conversion mode for dates so that
they do not take the time zone into account by passing 0 in this selector.
Converting the date !23/08/2013! will then give you "2013-08-23T00:00:00Z"
in all cases.
Scope: 4D in local mode, 4D Server
Kept between two sessions: Yes
Description: Sets or gets the current status of the legacy network layer for
client/server connections. The legacy network layer is obsolete beginning with
4D v14 R5 and should be replaced progressively in your applications with the

Use legacy
network
layer

Longint 87

ServerNet network layer. ServerNet will be required in upcoming 4D releases
in order to benefit from future network evolutions. For compatibility reasons,
the legacy network layer is still supported to allow a smooth transition for
existing applications; (it is used by default in applications converted from a
release prior to v14 R5). Pass 1 in this parameter to use the legacy network
layer (and disable ServerNet) for your client/server connections, and pass 0 to
disable the legacy network (and use the ServerNet).
This property can also be set by means of the "Use legacy network layer"
option found on the Compatibility page of the Database Settings (see
Network and Client-Server options). In this section, you will also find a
discussion about migration strategy. We recommend that you activate the
ServerNet as soon as possible.
You will need to restart the application in order for this parameter to be taken
into account. It is not available in 4D Server v14 R5 64-bit version for OS X,
which only supports the ServetNet; (it always returns 0).
Possible values: 0 or 1 (0 = do not use legacy layer, 1 = use legacy layer)
Default value: 0 in databases created with 4D v14 R5 or higher, 1 in
databases converted from 4D v14 R4 or earlier.

SQL Server
Port ID Longint 88

Scope: 4D local, 4D Server.
Kept between two sessions: Yes
Description: Gets or sets the TCP port number used by the integrated SQL
server of 4D in local mode or 4D Server. By default, the value is 19812. When
this selector is set, the database setting is updated. You can also set the TCP
port number on the "SQL" page of the Database Settings dialog box.
Possible values: 0 to 65535.
Default value: 19812

Circular log
limitation Longint 90

Scope: 4D local, 4D Server.
Kept between two sessions: No
Possible values: Any integer value, 0 = keep all logs
Description: Maximum number of files to keep in rotation for each type of
log. By default, all files are kept. If you pass a value X, only the X most recent
files are kept, with the oldest being erased automatically when a new one is
created. This setting applies to each of the following log files: request logs
(selectors 28 and 45), debug log (selector 34), events log (selector 79), as
well as Web request logs and Web debug logs (selectors 29 and 84 of the
WEB SET OPTION command).

Number of
formulas in
cache

Longint 92

Scope: 4D application
Kept between two sessions: No
Possible values: Positive longints
Default value: 0 (no cache)
Description: Sets or gets the maximum number of formulas to be kept in the
cache of formulas, which is used by the EXECUTE FORMULA command. This
limit is applied to all processes, but each process has its own formula cache.
Caching formulas accelerates the EXECUTE FORMULA command execution in
compiled mode since each cached formula is tokenized only once in this case.
When you change the cache value, existing contents are reset even if the new
size is larger than the previous one. Once the maximum number of formulas in
the cache is reached, a new executed formula will erase the oldest one in the
cache (FIFO mode). This parameter is only taken into account in compiled
databases or compiled components.

Cache flush
periodicity Longint 95

Scope: 4D local, 4D Server
Kept between two sessions: No
Possible values: longint > 1 (seconds)
Description: Gets or sets the current cache flush periodicity, expressed in
seconds. Modifying this value overrides the Flush Cache every X Seconds
option in the Database/Memory page of the Database settings for the

session (it is not stored in the Database settings).

Note: The table parameter is only used by selectors 31, 32, 46 and 47. In all other cases, it is ignored if it is
passed.

Example 1

The following statement will avoid any unexpected timeout:

 `Increasing the timeout to 3 hours for the current process
 SET DATABASE PARAMETER(4D Server Timeout;-60*3)
 `Executing a time-consuming operation with no control from 4D
 ...
 WR PRINT MERGE(Area;3;0)
 ...

Example 2

This example temporarily forces the execution of a query by formula command on the client machine:

 curVal:=Get database parameter([table1];Query By Formula On Server) `Store the current setting
 SET DATABASE PARAMETER([table1];Query By Formula On Server;1) `Force execution on the client
machine
 QUERY BY FORMULA([table1];myformula)
 SET DATABASE PARAMETER([table1];Query By Formula On Server;curVal) `Re-establish current
setting

Example 3

You want to export data in JSON that contains a converted 4D date. Note that conversion occurs when the date is
saved in the object, so you must call the SET DATABASE PARAMETER command before calling OB SET:

 C_OBJECT($o)
 SET DATABASE PARAMETER(JSON use local time;0)
 OB SET($o ;"myDate";Current date) // JSON conversion
 $json:=JSON Stringify($o)
 SET DATABASE PARAMETER(JSON use local time;1)

 WEB GET VARIABLES

WEB GET VARIABLES (nameArray ; valueArray)

Parameter Type Description
nameArray Text array Web form variable names
valueArray Text array Web form variable values

Description

The WEB GET VARIABLES command fills the text arrays nameArray and valueArray with the variable names and
values contained in the Web form “submitted” (i.e. sent to the Web server).
This command gets the value for all the variables which can be included in HTML pages: text area, button, check
box, radio button, pop up menu, choice list...
Note: Regarding check boxes, the variable name and value are returned only if the check box has been actually
checked.
This command is valid regardless of the type of URL or form (POST or GET method) sent to the Web server.
This command can be called, if necessary, in the On Web Connection Database Method or any other 4D method
resulting from a form submission.

About Web forms and their associated actions
Each form contains named data entry area (text area, buttons, checkboxes).
When a form is submitted (a request is sent to the Web server), the request contains (within others) the list of the
data entry areas and their associated values.
A form can be submitted through two methods (both can be used with 4D):

POST, usually used to add data into the Web server - to a database,
GET, usually used to request the Web server - data coming from a database.

Example

A form contains two fields, vName and vCity with “ROBERT” and “DALLAS” values. The action associated to the
form is “/4DACTION/WEBFORM”.

If the form method is POST (most frequently used), the data entered will not be visible in the URL
(http://127.0.0.1/4DACTION/WEBFORM).
If the form method is GET, the data entered will be visible in the URL
(http://127.0.0.1/4DACTION/WEBFORM?vNAME=ROBERT&vCITY=DALLAS).

The WEBFORM method can be as follows:

 ARRAY TEXT($anames;0)
 ARRAY TEXT($avalues;0)
 WEB GET VARIABLES($anames;$avalues)

The result will be:

 $anames{1}="vNAME"
 $anames{2}="vCITY"
 $avalues{1}="ROBERT"
 $avalues{2}="DALLAS"

The vNAME variable contains ROBERT and the vCITY variable contains DALLAS.

 _o_Font number

_o_Font number (fontName) -> Function result

Parameter Type Description
fontName String Font name for which to return the font number
Function result Longint Font number

Description

This command is obsolete and must no longer be used beginning with 4D v14. It is kept for compatibility reasons
but it will not be supported in future versions of the program.

 SEND RECORD

SEND RECORD {(aTable)}

Parameter Type Description
aTable Table Table from which to send the current record, or Default table, if omitted

Description

SEND RECORD sends the current record of aTable to the serial port or document opened by the SET CHANNEL
command. The record is sent with a special internal format that can be read only by RECEIVE RECORD. If no
current record exists, SEND RECORD has no effect.
The complete record is sent. This means that pictures and BLOBs stored in or with the record are also sent.
Important: When records are being sent and received using SEND RECORD and RECEIVE RECORD, the source
table structure and the destination table structure must be compatible. If they are not, 4D will convert values
according to the table definitions when RECEIVE RECORD is executed.
Note: If you send a record to a document using this command, the document must have been opened using the
SET CHANNEL command. You cannot use SEND RECORD with a document opened with Open document,
Create document or Append document.
Compatibility note: Beginning with version 11 of 4D, this command no longer supports subtables.

Example

See example for the RECEIVE RECORD command.

 _o_CREATE SUBRECORD

_o_CREATE SUBRECORD (subtable)

Parameter Type Description
subtable Subtable Subtable for which to create a new subrecord

Compatibility note

Subtables are no longer supported starting with version 11 of 4D. A compatibility mechanism ensures the
functioning of this command in converted databases; however, it is strongly recommended to replace any
subtables with standard related tables.

 _o_ADD DATA SEGMENT

_o_ADD DATA SEGMENT
Does not require any parameters

Description

Compatibility note: Starting with version 11 of 4D, data segments are no longer supported (the size of the data
file is now unlimited). When it is called, this command does nothing.

 Quick table

Explanation of values for the “Status” column:

Removed: No longer available in the current version (or the version indicated).
Deprecated: Should no longer be used and will be removed in a future major version
OS: Depends on officially deprecated OS technologies (e.g.: PICT format). Status is the same as Deprecated,
but an OS could remove the support before we do

Feature Replacement Status
Status in
4D 64-bit
versions

Mac OS QuickDraw fonts Font names Deprecated Removed

Altura Mac2Win Plug-in developers: use native Windows
code Deprecated Removed

Dynamic assignment of variables
received via HTTP (compatibility option
for databases created prior to v13.4)

WEB GET VARIABLES command (to
recover variables). WEB GET BODY
PART/WEB Get body part count
commands (to recover posted files)

Deprecated Deprecated

Non-Unicode mode (converted pre-
v11 database) Move to Unicode Deprecated Removed

QuickTime support (compatibility
option available using SET DATABASE
PARAMETER(QuickTimeSupport;1))

Use native formats Deprecated Removed

API QuickDraw New SDK plug-in for third-party plug-ins Deprecated Removed

Converted subtables Use N->1 tables Deprecated Deprecated

XSLT Use PHP libxslt module or the PROCESS 4D
TAGS command Deprecated Removed

4D Pack Various integrated 4D commands or other
technologies Deprecated Deprecated

Mac Resources

Use "Resources" folder. For compatibility,
you can still use it in converted databases.
We no longer support write access
commands.

OS
OS (cicn
icons:
removed)

PICT Use modern formats; help is provided by
GET PICTURE FORMATS OS Removed

 Previous documents

This document concerns the 4D v16 product range. For reference, you can consult previous documents (PDF)
describing deprecated features in prior product ranges, available here:

Deprecated and Removed Features in 4D v15 - (Rev. June 2015)
Deprecated and Removed Features in 4D v14 - (Rev. Oct 2014)
Deprecated and Removed Features in 4D v13 - (Rev. 20 Feb 2012)
Deprecated and Removed Features in 4D v12 - (Rev. 03 Jun 2010)

	Deprecated and Removed Features
	About this manual
	Deprecated or removed features in v16 product range
	About 4D 64-bit versions
	XSLT commands deprecated
	Pictures in PICT format
	Detecting PICT format in your database structure

	QuickTime
	QuickTime image formats under Windows

	Dynamic assignment of variables received through HTTP
	Mac OS QuickDraw fonts no longer supported
	Altura Mac2Win
	Subtables
	Non-Unicode mode
	Mac Resources
	API QuickDraw for plug-ins
	4D Pack
	Language: deprecated and/or removed commands
	Obsolete commands renamed and hidden

	_o_XSLT APPLY TRANSFORMATION
	Compatibility note

	PROCESS 4D TAGS
	Description
	Example 1
	Example 2

	GET PICTURE FORMATS
	Description
	Example

	_o_QT COMPRESS PICTURE
	Compatibility note

	CONVERT PICTURE
	Description
	Example 1
	Example 2

	Maintenance and security center
	SET DATABASE PARAMETER
	Description
	Example 1
	Example 2
	Example 3

	WEB GET VARIABLES
	Description
	Example

	_o_Font number
	Description

	SEND RECORD
	Description
	Example

	_o_CREATE SUBRECORD
	Compatibility note

	_o_ADD DATA SEGMENT
	Description

	Quick table
	Previous documents

