Introduction to 4D for OCI

By Yvan Ayaay, Technical Support Engineer, 4D Inc.
TN 05-39

Introduction

The 4D for OCI plug-in allows 4D to communicate with Oracle Servers. It
uses the Oracle Call Interface (OCI), an Application Program Interface (API),
which allows native access to Oracle Servers. It makes it possible to access
data from an Oracle database within any 4th Dimension or 4D Server based
applications acting as Oracle clients. In this technical note, the basic concepts
and some of the basic operations of 4D for OCI will be discussed.

Overview

The Oracle Call Interface (OCI) is an application programming interface (API)
that allows applications to interact with one or more Oracle Servers. OCI
provides a library of standard database access and retrieval functions in the
form of a dynamic runtime library. This OCI library needs to be installed for
the 4D for OCI plug-in to work. It provides native connectivity to Oracle
database servers and gives programs the capability to perform different
database operations on an Oracle database. The OCI library allocates handles
that stores context information, connection information, bind information,
data information, and error information. An OCI application can then access
specific information contained in these handles. It controls connection,
executes SQL statements, and stores and processes result rows of queries.

Installation and Configuration

4D for OCI provides support for Oracle 8.16, Oracle 9 and Oracle 10
databases. In order for it to function, the files (libraries) needed to run OCI
must be installed. You can install the libraries by downloading and installing
the Oracle Database Client Software from Oracle Technology Network Web
Site (http://www.oracle.com/technology/software/). Navigate to each of the
download pages for the products that you want to install. For instance, you
can choose to select the Oracle Database 10g download link and select the
one for your operating system.

OCI Library Installation for Windows

For installation of the Oracle Client in Windows, you can simply use the
Oracle Universal Installer. Once you downloaded the Oracle Client installer
and once the file is extracted, click on the Setup.exe file to launch the Oracle
Universal Installer which guides you through the installation process (the
Administrator type was selected as the installation type on the setup here).
Here’s a link to the installation guide:

http://download-east.oracle.com/docs/cd/B19306_01/install.102/b14312/install.htm#BABJGGJH

The OCI Library comes installed with the Oracle Client application. After the
installation, the connection to the Oracle database should be properly
configured by setting up the tnsnames.ora file. You can create this file and
configure it using the Net Configuration Assistant program that gets installed
together with the Oracle Database Client. Launch this application from the
Start Menu->Oracle-Home_Name->Configuration->Migration Tools. Then,
configure the connection by entering the name of the Oracle database you
want to connect to, the protocol, and the IP Address of the database server.
The tnsnames.ora is created at the following location:

ORACLE_BASE\ORACLE_HOME\network\admin\tnsnames.ora

You can manually create it using a text editor with proper configuration
values and put it at the above location. Each entry follows the syntax as
shown below:

tnsnames.ora Network Configuration File:
C:\oracle\product\10.2.0\client_1\network\admin\tnsnames.ora
Generated by Oracle configuration tools.

ORACLE4D =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = 10.64.0.20)(PORT = 1521))
)
(CONNECT_DATA =
(SERVICE_NAME = oracle4d)

)
)

Once the client application is installed, you can now use the 4D for OCI.

OCI Library Installation for Mac OS 10.3.x

To install the OCI Library on Mac OS 10 (tested on Mac OS 10.3.9 machine),
the Oracle 10g Instant Client for Mac OS X can be used. You can download
the Instant Client at this location:
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/ma
csoft.html

The file you want is called "instantclient-basic-macosx-10.1.0.3.zip".

Here are the steps that were performed to install the Instant Client and make
it work with 4D for OCI:

NOTE: All Terminal commands are CASE SENSITIVE!

1) Install the Oracle 10g Instant Client files to the proper location

To get the Instant Client working with 4D for OCI the files must be in a
directory called "/Oracle". Additionally you need the files to be owned by
"root". Here are the steps to place the files in the proper location:

-Extract the "instantclient-basic-macosx-10.1.0.3.zip" archive to your
desktop. This will create a folder called "instantclient10_1".

-Open a Terminal window.

-Execute the command 'sudo sh'. This opens an sh shell as root.

-Enter your password when prompted. If you can not complete this step
stop, you need 'sudo' access to do this install.

-Execute the command 'mkdir /Oracle'.

-Type 'cp ' and then drag the "instantclient10_1" folder from your desktop to
the Terminal window. Do not press return.

-Type backspace, then '/* /Oracle'. At this point the command should look
like:

sh-2.05b# cp <your user home>/Desktop/instantclient10_1/* /Oracle
-Press return. This will copy all of the Instant Client files to the "/Oracle"
folder.

-Keep the terminal window open and move to step 2.

2) Copy the required Oracle library to the proper location.
-Execute the command 'cp /Oracle/libcintsh.dylib.10.1
Jusr/lib/libcintsh.dylib'.

-Execute the command 'chmod 777 /usr/lib/libcIntsh.dylib'.
-Execute the command 'exit'. This takes you out of "root" mode.
-Keep the terminal window open and move to step 3.

3) Create/Update an "environment.plist" file for the user that will be using
4D for OCI.

-Execute the command 'cd ~'. This takes you to your home directory.
-Execute the command 'mkdir .MacOSX'. Note the '." is required.

You now need to create a file called "environment.plist". This is a Macintosh
properties file and is a plain text, XML file. How you create it will vary
depending on how your machine is set up. E.g. there is a Property List Editor
in Mac OS X that you can use. You can also use a plain text editor, or 'vi'
from the Terminal. However when you create the file, the contents should
be:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0/EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>DYLD_LIBRARY_PATH</key>
<string>/Oracle</string>
<key>ORACLE_HOME</key>
<string>/Oracle/OCl/oci</string>
<key>ORA_NLS33</key>
<string>/Oracle/OCl/oci/locommon/nls/admin/data</string>
<key>TNS_ADMIN</key>
<string>/Oracle/OCl/oci/network/admin</string>

</dict>

</plist>

If you did not create this file in the ".MacOSX" folder, move it there. You
may need to do this from a Terminal as, by default, Finder does not display
folders that start with a '.' (these are hidden folders in *nix). To copy the file
from a Terminal:

cp <folder that contains>/environment.plist ~/.MacOSX
Once the file is in place, log out and log back in.

Note:

If you do not want to install the Instant Client files to /Oracle you must use
the 4D for OCI command "OCISetEnv" to set the values for "ORACLE_HOME",
"ORA_NLS33" and "TNS_ADMIN". The 4D for OCI plug-in uses these values
as defaults (as seen in "environment.plist"):

ORACLE_HOME=/Oracle/OClI/oci
ORA_NLS33=/0Oracle/OCl/oci/ocommon/nls/admin/data
TNS_ADMIN=/0racle/OCI/oci/network/admin

Just like in the Windows setup, the TNSNAMES.ORA file should be created
and properly setup to set the target IP address of the oracle machine. Here
are the steps to do this:
1. Create a TNSNAMES.ORA file using a text editor and type entries as shown
below.
oracle4d =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL =TCP)(HOST = 10.96.0.61)(POST = 1521))

)
(CONNECT_DATA =

(SERVICE_NAME = oracle4d)

)
)

Make sure you have the correct IP address for your Oracle server provided in
the HOST parameter.

2. Open your terminal window and copy the file to /private/etc directory.
You should now be able to use the 4D for OCI plug-in.
Note: If the 4D for OCI plug-in shows as disabled in the Explorer window-

>Components section in the Design environment, it is possible that the OCI
Library is not installed properly.

Basic OCI Program Structure

An OCI application follows a program structure as shown below. This
program flow should be followed when developing an OCI application within
4D.

Create
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Beain Session

v

Issue SQL
and Process

v

Disconnect

v

Free Handles
Data Structures

Initially, an OCI environment is created and the handles are allocated. Then,
a connection to the server is made and a session is started. In this session,
SQL statement are issued and processed with changes applied to database

through the process of commit. Lastly, disconnecting from the server and
freeing of handles are performed.

Below are the steps in developing an OCI application within 4D (in the Basic
Operation section below, all these steps are put together in the examples):

Step 1: Creation and initialization of the OCI programming environment and
threads.

An OCI environment needs to be created and initialized at the
beginning of an OCI application. All OCI functions are executed in the context
of this environment. The 4D for OCI command OCIEnvCreate() needs to be
invoked before executing other OCI calls. This command creates the OCI
environment and initializes its handle. This handle is then used in allocating
other handle types. Below is a code example on how to use this command.

$error_l:=OCIEnvCreate ($Envhp;OCI_HTYPE_ENV)

Step 2: Allocate handles and descriptors.

Most OCI calls use handles as parameter(s). A handle is basically a
pointer to a storage area allocated by the OCI library. Information about the
context, connection, data, and OCI function calls are stored in handles that
are accessed by OCI applications. Thus, the necessary handles need to be
allocated in an OCI program. Among these handles that need to be allocated
are the service context handle, server handle, session handle, statement
handle, and error handle.

The service context handle defines attributes that determine the operational
context for OCI calls to a server. It comprises of three additional handles:
server, session, and transaction handles. The server handle identifies
connection to the database server. The session handle identifies user's roles
and privileges, and the operational context. And the transaction handle
defines transaction in which the SQL operations are performed.

The statement handle defines SQL Statements and its associated attributes.
The error handle which is passed as parameter to an OCI call contains
information about errors that occurred in an OCI operation. Information
about the error can be checked using the OCIErrorGet() command.

Below is a sample code that shows allocation of these handles:

$error_l:=OCIHandleAlloc ($Envhp;$svchp;OCI_HTYPE_SVCCTX) ‘Service context handle
$error_l:=OCIHandleAlloc ($Envhp;$authp;OCI_HTYPE_SESSION) ° Session handle
$error_l:=OCIHandleAlloc ($Envhp;$srvhp;OCI_HTYPE_SERVER) ° Server handle
$error_l:=OClIHandleAlloc ($Envhp;$Stmthp;OCI_HTYPE_STMT) ‘Statement Handle
$error_l:=OCIHandleAlloc ($Envhp;$errhp;OCI_HTYPE_ERROR) " Error handle

Step 3: Establish server connections and user sessions.
Once the OCI environment is initialized and the necessary handles
allocated, the next step is to establish server connections and to begin user

sessions. There are two options in doing this: Single User / Connection; or
Multiple Sessions / Connections.

If only a single user session for each database connection is required,
a simplified logon call OCILogon() can be used. As shown in the code below,
the environment, error, and service context handle are passed together with
the database access parameters.

$error_l:=0OCILogon ($Envhp;$errhp;$svchp;"scott”;"tiger";"oracle4d")

For multiple users’ sessions, different sets of OCI calls are performed:
calls to attach to the server and to start a session. As shown below, the
command OCIServerAttach() is executed to create an access path to the
server and, then, the server attributes are set. With the command
OClISessionBegin, a session for the user is established.

$error_l:=OClIServerAttach ($srvhp;$errhp;"oracle4d")
$error_l:=OCIAttrSetVal ($svchp;$srvhp;OCI_ATTR_SERVER ;$errhp)
$error_l:=OCIAttrSetText ($authp;"scott";22;$errhp)
$error_|l:=OCIAttrSetText ($authp;"tiger";23;$errhp)
$error_l:=OClSessionBegin ($svchp;$errhp;$authp;1;0)
$error_L:=OCIAttrSetVal ($svchp;$authp;OCI_ATTR_SESSION ;$errhp)

Step 4: Issue SQL and Process Data

Once a connection to the server is established and a user session is
started, it is now possible to manipulate and access data from the database
server by executing SQL statements on the server. You can either change
data in the oracle database table or retrieve data from it into an output
variable such as an array, variable, field etc. To change data in the database
by using DML (Data Manipulation Language) commands like insert, update,
and delete, a binding of input variables should be performed before executing
the statement. On the other hand, to retrieve data from database using SQL
statements, defining of output variables are performed. In both cases,
preparing of the SQL statement is needed. The statement OCIStmtPrepare()
as shown below should be executed before the binding or defining.

$error_I:=OCIStmtPrepare ($Stmthp;$Errhp;$sql_t;0CI_DEFAULT)

You can manipulate data in the oracle database by binding (changing data
in the database) or defining (retrieving data from the Oracle database into
4D).

Binding: Changing data in the database.

When passing data to Oracle as part of the SQL statement to perform, you
will need to bind associated place holders in the statement to input variables
in 4D. For example, when you perform an insert, you pass the values in your
variables in 4D to Oracle through binding. For DML statements and queries

with input variables, binding can be performed by using OCIBindByPos() or
by using OCIBindByName() to bind the address of each input variable or
array to each placeholder in the statement.

For example in the statement "INSERT INTO DEPT (DEPTNO,DNAME, LOC)
VALUES (:DEPTNO,:DName,:LOC)", you can bind values assigned to 4D
variables deptno, dname, and location just like the code below:

myptrvarl:=Get pointer("deptno")
myptrvar2:=Get pointer("dname")
myptrvar3:=Get pointer("location")
$error_|:=0OCIBindByPos ($Stmthp;$dpp;$Errhp;1;myptrvarl;SQLT_INT
;tindp;trlenp;trcodep;OCI_DEFAULT)
$error_|:=0OCIBindByPos ($Stmthp;$dpp;$Errhp;2;myptrvar2;SQLT_STR
;tindp;trlenp;trcodep;OCI_DEFAULT)
$error_|:=0OCIBindByPos ($Stmthp;$dpp;$Errhp;3;myptrvar3;SQLT_STR
;tindp;trlenp;trcodep;OCI_DEFAULT)

After binding, the statement is then executed using the OCIStmtExecute()
command.

Defining: Retrieving data from an Oracle database into 4D.

When you perform query statements, data is returned from the Oracle
database to 4D. When processing a query, output variables within 4D should
be defined. Defining of output variables associates where the returned results
are stored and what type of data format. For instance, if you have SQL
Statement that gets the job description of all employees in the Employee
table (Select job from Employee), you can perform a code just like below to
define the output variable (an array as) in 4D:

* SQL Statement: Select job from Employee

ARRAY TEXT(Returnvalue_at;0)

$error_|:=0OCIDefineByPos ($Stmthp;$define;$Errhp;1;->vReturnvalue_at;SQLT_STR
;tindp;trlenp;trcodep;OCI_DEFAULT

When the statement is executed, the result needs to be fetched--it will
be stored in the text array Returnvalue_at. The 4 parameter of the
OCIDefineByPos command is the column number (1 in the example for
first column which is job) of the SQL Statement that the output
variable is assigned. To fetch results, you use the OCIStmtFetch().

The code example below shows this:

$error_|l:=0CIStmtPrepare ($Stmthp;$Errhp;$sql_t;OCI_DEFAULT) “Length($sql_t)) = ***
Prepare SQL statement
If ($error_I=0)

$error_l:=OCIDefineByPos($Stmthp;$define;$Errhp;1;>vReturnvalue_t;SQLT_STR;tindp;trlenp
;trcodep;OCI_DEFAULT)

© *** Bind Oracle variable by position toward 4D
If ($error_I=0)
$error_l:=0CIStmtExecute ($svchp;$Stmthp;$SErrhp;0;0;0;0;0CI_DEFAULT)
T **x Execute the SQL statment
If If($error_I=0)
Repeat
$error_|:=0OCIStmtFetch ($Stmthp;$Errhp;1) = *** Fetch the result 1 row at the
time
If ($error_I=0)
APPEND TO ARRAY(Returnvalue_at;vReturnvalue_t)
End if
Until ($error_I=OCI_NO_DATA)

Step 5: Commit

For the changes in the database to take effect, changes need to be
committed using the OCITransCommit()command. The service context
handle is passed as parameter as shown below. If the database is terminated
without commit, the changes will not take affect as an automatic rollback is
performed.

$error_l:=OCITransCommit ($svchp;$Errhp;OCI_DEFAULT)

Step 6: Terminate user sessions and server connections.

Before terminating the application the user sessions and server
connections should be terminated. The user session and server connection
are ended by calling the OCISessionEnd() and OCIServerDetach()
respectively.

Step 7: Free handles.

An OCI application must free all handles when they are no longer needed.
The OCIHandleFree() function frees handles.

OCI Basic Operations

In this section, some of the basic operations supported by OCI will be shown.
The first example will retrieve data from an Oracle database and will fetch
the results into an array. The second example inserts data into an Oracle
database.

Example 1: Retrieving data from an Oracle database into 4D using SQL.

"Method: QueryData
“Description: This method will retrieved data from Oracle database and place the result
) into an array.

C_LONGINT($error_l)
C_LONGINT($Envhp;$errhp;$svchp;$authp;$srvhp)
C_LONGINT($srvhp;$svchp;$authp;$errhp)

ARRAY TEXT(Returnvalue_at;0)
C_TEXT(vReturnvalue_t;null_t)
C_POINTER(tindp;trlenp;trcodep)

tindp:=->null_t = *** Provide a null value to the text variable

C_TEXT($sql_t)

* Select statement.
$sql_t:="Select job from emp"

*** Create the OCI Environment
$error_l:=OCIEnvCreate ($Envhp;OCI_HTYPE_ENV)

If ($error_I=0)

“*** Allocate Handles and Data Structures
$error_l:=OCIHandleAlloc ($Envhp;$errhp;OCI_HTYPE_ERROR) ° Allocate Error handle.
If ($error_I=0)
$error_l:=OCIHandleAlloc ($Envhp;$svchp;OCI_HTYPE_SVCCTX) ‘Allocate Service
Context Handle.
If ($error_I=0)
$error_l:=OCIHandleAlloc ($Envhp;$authp;OCI_HTYPE_SESSION)
" Allocate User Session Handle
If ($error_I=0)
$error_l:=OCIHandleAlloc ($Envhp;$srvhp;OCI_HTYPE_SERVER)
“Allocate Server session handle
If ($error_I=0)
$loginok_b:=True
End if
End if
End if
End if
End if

*** Connect to Server

$define:=0
If ($error_I=0)
$error_l:=OCILogon ($Envhp;$errhp;$svchp;"scott”;"tiger";"oracle4d") * connect server

using simple logon call.

“xxxx |ssue SQL Statement
If ($error_I=0)
$error_l:=OCIHandleAlloc ($Envhp;$Stmthp;OCI_HTYPE_STMT) = *** Create SQL
Statement Handler
If ($error_I=0)
$error_l:=OCIStmtPrepare ($Stmthp;$Errhp;$sql_t;Length($sql_t)) ~ *** Prepare SQL
statement
If ($error_I=0)

$error_|:=OCIDefineByPos ($Stmthp;$define;$Errhp;1;->vReturnvalue_t;SQLT_STR
;tindp;trlenp;trcodep;OCI_DEFAULT) ~ *** Define output variables
If ($error_I=0)
$error_|:=OCIStmtExecute ($svchp;$Stmthp;$Errhp;0;0;0;0;0CI_DEFAULT) °~ ***
Execute the SQL statment
If ($error_I=0)
Repeat
$error_|:=0CIStmtFetch ($Stmthp;$Errhp;1) ~ *** Fetch the result 1 row at
the time
If ($error_I=0)
APPEND TO ARRAY(Returnvalue_at;vReturnvalue_t) = *** Put fetch results
into array.
End if
Until ($error_I=OCI_NO_DATA)

End if
End if

$error_l:=OCIHandleFree ($Stmthp)

End if
End if
End if
End if

If ($loginok_b)
" ***Disconnect from server
$error_l:=0OCILogoff ($svchp;$errhp)

Trkkxx Free Handles
$error_l:=OCIHandleFree ($svchp)
$error_l:=OCIHandleFree ($srvhp)
$error_l:=OCIHandleFree ($errhp)
$error_l:=OCIHandleFree ($authp)

End if

Example 2. Inserting data into an Oracle database.

"Method: InsertData
“Description: This method will insert a record in the Oracle database.

C_LONGINT($error_l)
C_LONGINT($Envhp;$errhp;$svchp;$authp;$srvhp)
C_LONGINT($srvhp;$svchp;$authp;$errhp)

C_TEXT(vReturnvalue_t;null_t)
C_POINTER(tindp;trlenp;trcodep)
C_POINTER(myptrvarl;myptrvar2;myptrvar3)

C_LONGINT(deptnol)
C_TEXT(dnamel;locl)
C_TEXT($sql_t)

deptnol:=12
dnamel:="Management"
locl:="Seattle"

myptrvarl:=Get pointer("deptnol")
myptrvar2:=Get pointer("dnamel")
myptrvar3:=Get pointer("locl")

tindp:=->null_t = *** Provide a null value to the text variable

° SQL STATEMENT to insert record to DEPT table in Oracle.
"The variables preceded by : are place holders.
$sql_t:="INSERT INTO DEPT (DEPTNO,DNAME, LOC) VALUES (:DEPTNO,:DName,:.LOC)"

*** Create the OCI Environment
$error_l:=OCIEnvCreate ($Envhp;OCI_HTYPE_ENV)
If ($error_I=0)

“**x Allocate Handles and Data Structures
$error_l:=OClIHandleAlloc ($Envhp;$errhp;OCI_HTYPE_ERROR)
* Allocate Error handle.
If ($error_I=0)
$error_l:=OCIHandleAlloc ($Envhp;$svchp;OCI_HTYPE_SVCCTX)
"Allocate Service Context Handle.
If ($error_I=0)
$error_l:=OClIHandleAlloc ($Envhp;$authp;OCI_HTYPE_SESSION)
" Allocate User Session Handle
If ($error_I=0)
$error_l:=0OCIHandleAlloc ($Envhp;$srvhp;OCI_HTYPE_SERVER)
“Allocate Server session handle
If ($error_I=0)
$loginok_b:=True
End if
End if
End if
End if
End if

*** Connect to Server and Begin Session
$define:=0
If ($error_I=0)
$error_l:=OClIServerAttach ($srvhp;$errhp;"oracle4d")
“Create access path to oracle database
If ($error_I=0)
$error_|l:=OCIAttrSetVal ($svchp;$srvhp;OCI_ATTR_SERVER ;$errhp)
* Set server attributes
If ($error_I=0)

$error_|l:=OCIAttrSetText ($authp;"scott";22;$errhp) "Set user name to access
server. 22 is attribute type.
If ($error_I=0)
$error_I:=OCIAttrSetText ($authp;"tiger;23;$errhp) ° Set password. 23 is attribute
type.
If ($error_I=0)
$error_l:=0OClISessionBegin ($svchp;$errhp;$authp;1;0) ° Begin user session
If ($error_I=0)
$error_lL:=OCIAttrSetVal ($svchp;$authp;OCI_ATTR_SESSION ;$errhp) "Set
session attribute

“xxxx |ssue SQL Statement
If ($error_I=0)
$error_l:=OCIHandleAlloc ($Envhp;$Stmthp;OCI_HTYPE_STMT)
T *** Create SQL Statement Handler
If ($error_I=0)
$error_|:=OCIStmtPrepare ($Stmthp;$Errhp;$sqgl_t;Length($sql_t))
T *** Prepare SQL statement
If ($error_I=0)
***Bind variables to positions in the SQL statement.
"The 4th parameter is the position in the SQL Statment, the 5th parameter is
a pointer to the variable to bind, and the 6th parameter is the data type.
$error_|:=0OCIBindByPos ($Stmthp;$dpp;$Errhp;1;myptrvarl;SQLT_INT
;tindp;trlenp;trcodep;OCI_DEFAULT)
$error_|:=0OCIBindByPos ($Stmthp;$dpp;$Errhp;2;myptrvar2;SQLT_STR
;tindp;trlenp;trcodep;OCI_DEFAULT)
$error_|:=0OCIBindByPos ($Stmthp;$dpp;$Errhp;3;myptrvar3;SQLT_STR
;tindp;trlenp;trcodep;OCI_DEFAULT)
If ($error_|=0)
$error_l:=OCIStmtExecute ($svchp;$Stmthp;$Errhp;1;0;0;0CI_DEFAULT)
T *** Execute the SQL statment
$error_l:=OCITransCommit ($svchp;$Errhp;OCI_DEFAULT)
“*** Commit changes to database.
End if
“*** Free statement handle.
$error_l:=OCIHandleFree ($Stmthp)
End if

End if
End if
End if
End if
End if
End if
End if
End if

If ($loginok_b)
" ***Disconnect from server
$error_l:=OClSessionEnd ($svchp;$errhp;$authp)
$error_l:=OCIServerDetach ($srvhp;$errhp)

Tkkkxx Free Handles
$error_l:=OCIHandleFree ($svchp)
$error_l:=OCIHandleFree ($srvhp)
$error_l:=OCIHandleFree ($errhp)
$error_l:=OCIHandleFree ($authp)

End if

Summary

The 4D for OCI plug-in allows you to access and manipulate data from an
Oracle Database through the OCI(Oracle Call Interface) API. The OCI Library
must first be installed before you can use 4D for OCI and the tnsnames.ora
file should be configured for the server. The OCI Library performs the native
access to the Oracle database. An OCI program structure is followed to
develop an OCI application within 4D. The OCI program flow follows this
order: create environment, allocate handles, connect to server and begin
session, process SQL statement, disconnect, and free handles. 4D for OCI
plug-in makes it possible to communicate to an Oracle database from 4D.

