
The 4DDebugLog.txt file

By Hugo Fournier, Technical Support Manager, 4D, Inc.
TN 06-01

Introduction
--

Starting with version 2004.3, a debug log file can now be created by 4D
Server, 4D Client and 4th Dimension. This technical note discusses the basic
principles and possible uses of this log file.

Principles
--

If you have spent enough time writing code, odds are that you have
encountered more than your fair share of bugs in your code. When it comes
to troubleshooting bugs, most of them can be found by tracing the code in
the debugger or simply reviewing your code closely. The idea at work is that
if you get to reproduce the problem, it is just a matter of technique, time and
patience before you can narrow it down to a statement or a piece of code.

Unfortunately, there are exceptions to that. Problems may occur in compiled
mode only or happen once a day and trigger a server crash. The idea behind
the log file is to keep track of what is executed by the 4D application. When
the application crashes, it should provide you with detailed information on
the sequence of commands that lead to the crash.

The Log file
--

Creating the Log file

This option can be activated for any type of 4D application
(4th Dimension single user, 4D Server, 4D Client, 4D Runtime), in
interpreted or compiled mode. To create the Log file, simply execute the SET
DATABASE PARAMETER command using the selector 34:

SET DATABASE PARAMETER (Selector;Option)
Selector is 34
Possible values for Option: 0, 1 or 2 (0 = do not record, 1 = record, 2 =
record in detailed mode).

Description: Starts or stops the sequential saving of events occurring at the
4D programming level, intended for debugging the application. By default,
the value is 0 (events are not recorded).

What is recorded?

Various types of information can be recorded, more particularly:
- For each event, the number of milliseconds since the creation of the
file and the process number ([n]).
- The execution of each 4D command (cmd) and each calling of a plugin
(plugInName); in this case, the stack level is indicated ((n)).
- Each calling of project methods (meth), object methods (obj) and form
methods (form).
- When the detailed mode is activated (value = 2), additional information
concerning the plug-ins are recorded: events in the plug-in areas
(EventCode) and calls to 4D by the plug-ins (externCall). For example, if you
implement a drag and drop system between 4D View areas, only option 2 will
allow you to log the commands that directly are involved with the drag and
drop.

This file is erased and rewritten each time the application is launched. If the
4D application is not relaunched, and you interrupt the recording of the log
and restart it, the recording resumes in the original file. The log file remains
locked until either the application is shutdown or a SET DATABASE
PARAMETER (34;0) is issued.

Note: Each event is systematically recorded in the file before its execution,
which guarantees its presence in the file even when the application quits
unexpectedly.

Where is the log recorded?
The events are stored in a file named “4DDebugLog.txt” that is automatically
placed:

- next to the database structure file ford 4D Server and 4th Dimension
- in the 4D Preferences folder (C:\Documents and

Settings\User\Application Data\4D\DB_Name.4DB_255_255_255_255
on Windows or User/Library/Application
Support/4D/DB_Name.4DB_255_255_255_255 on Mac OS) .

When to use the log?

This option is intended solely for the purpose of debugging and must not be
put into production since it may lead to deterioration of the application
performance as well as saturation of the hard disk. A way to work around the
hard disk limitation is discussed later in this technical note.

Keep in mind that, even in the basic mode, for each command that is
executed by 4D, a new entry is made in the log, which explains the

deterioration of performance. Typically though, you will use the log for
situations that cannot be investigated easily through the debugger. A good
example would be a server crash when several clients are connected and
where knowing what the sequence of commands being executed is at any
given time.

Example
--

As we mentioned earlier, one of the drawback of the debug log file is that it
tends to overwhelm your hard disk in no time on either a busy server or a
busy client. In addition to that, most of the time, the only parts of the log
you want to take a look at are actually the last hundred lines or so. Based
on that, we implemented a piece of code that interrupts the logging, archives
the log file and creates a new file. At any given time there should not be
more than five consecutive log files on the disk.

This code performs the following:

- Each time the application is launched, the debug file is archived. The
reason for doing that is that the log that lead to the crash has to be
preserved. Launching the application after the crash and triggering the
debug mode again will otherwise erase that file.

- Files are archived with a name that indicates the date and time of the
archiving.

- After the first archiving, a process constantly monitors the size of the
log. Once it goes past a threshold (500kb, roughly) the debug mode is
deactivated, the debug file is archived and the debug mode is enabled
again, which creates a new debug file. The code maintains an array of
the archive which warrants, through automatic deletion, that you will
not have more than five archives at any given time. Please note that,
in most cases, only the last archive is of use since it includes the
sequence of commands that lead to the crash.

Also, due to the multi-process nature of 4D, there is a slim chance that
the crash occurs when the log is off. Although this is unlikely, you
need to always keep this in mind. This is a trade off on the fact that, to
reset the log, you have to first disable the logging which releases the
access to the log. Once moved, the application can resume and create
a new log file.

- The code archives the bug where 4D/4D Server/4D Client creates it.
Per se, only the client requires a specific handling since it handles the
location of the log differently from the other 4D Applications.

To install this code in your database:

- For 4D Client and 4D Stand alone, simply copy the contents of the On
Startup and On exit database methods and re-create the
M_Monitor_Process method.

- For 4D Server, simply copy the contents of the On Server Startup and
On Server shutdown methods and re-create the M_Monitor_Process
method.

On Startup/On Server Startup method:
This method initializes interprocess variables and detects if 4D Client is used.
ARRAY TEXT(<>aPathList;0)
C_TEXT(<>vClientPath)
 `4D Client is looking at a different location
C_BOOLEAN(<>Startup)
C_BOOLEAN(<>vEnd)
SET DATABASE PARAMETER(34;2)
<>vEnd:=False
<>Startup:=True
If (Application type=4)

 `detecting the case of the client
<>vClientPath:=Get 4D folder(3)

End if
New process("M_Monitor_Process";512*1024)
`starting the archiving monitoring process

On Exit/On Server Shutdown method:
This method initializes an interprocess variables that terminates the
monitoring process.
<>vEnd:=True

The M_Monitor_Process method:
This method handles the entire archiving process.

If (Test path name(<>vClientPath+"4DDebugLog.txt")=1) & (<>Startup)
 ` if log exists at first pass-> archiving
<>Startup:=False
 `no longer first pass
$Str_Time:=String(Current time)
$Str_Date:=String(Current date)
 `getting current save info
$Str_Time:=Replace string($Str_Time;":";"_")
$Str_Date:=Replace string($Str_Date;"/";"_")
 `getting rid of problem characters
SET DATABASE PARAMETER(34;0)
 `disabling the log to release the lock
MOVE DOCUMENT(<>vClientPath+"4DDebugLog.txt";<>vClientPath+"Archived on "+$Str_Date+" at

"+$Str_Time+".txt")
 `archiving log
INSERT ELEMENT(<>aPathList;1)
<>aPathList{1}:=<>vClientPath+"Archived on "+$Str_Date+" at "+$Str_Time+".txt"
 `bye bye log

SET DATABASE PARAMETER(34;2)
 `log is back ASAP

If (Size of array(<>aPathList)=6)
DELETE DOCUMENT(<>aPathList{6})
DELETE ELEMENT(<>aPathList;6)

End if
Else

ALERT("Log file is absent, the debug mode is not activated")
 `if it were activated the log file would test present
<>vEnd:=True

End if
Repeat

DELAY PROCESS(Current process;60)

If (Get document size(<>vClientPath+"4DDebugLog.txt")>500000)
$Str_Time:=String(Current time)
$Str_Date:=String(Current date)
 `getting current save info
$Str_Time:=Replace string($Str_Time;":";"_")
$Str_Date:=Replace string($Str_Date;"/";"_")
 `getting rid of problem characters
SET DATABASE PARAMETER(34;0)
 ` `disabling the log to release the lock
MOVE DOCUMENT(<>vClientPath+"4DDebugLog.txt";<>vClientPath+"Archived on "+$Str_Date+" at

"+$Str_Time+".txt")
 `archiving log
INSERT ELEMENT(<>aPathList;1)
<>aPathList{1}:=<>vClientPath+"Archived on "+$Str_Date+" at "+$Str_Time+".txt"
 `bye bye log
SET DATABASE PARAMETER(34;2)
 `log is back ASAP

If (Size of array(<>aPathList)=6)
DELETE DOCUMENT(<>aPathList{6})
DELETE ELEMENT(<>aPathList;6)
 `no more than 6 logs

End if

End if

Until (<>vEnd)
 `<>vEnd is for clean death of process

Summary
--

Starting with version 2004.3, a debug log file can now be created by 4D
Server, 4D Client and 4th Dimension. This technical note discusses the basic
principles and possible uses of this log file. It also illustrates a technique that
archives logs on the fly and works around the risk to saturate you hard disk.

