
Recording information
sent between 4D Client and 4D Server

By Jean-Yves Fock-Hoon, QA Manager, 4D, Inc.

Technical Note 06-03

Overview
--

This Technical Note will demonstrate you how to record and analyze requests
exchanged between 4D Client and 4D Server.

Purpose

In 4D version 2004, the SET DATABASE PARAMETER command has been
considerably improved. One of these improvements is the introduction of a
new parameter, ID 28, (4D Server Log Recording). This parameter can be
used in a Client/Server configuration and requires an additional numerical
value as parameter.

- If the value is 0, 4D Server will stop recording.
- If the value is greater than 0, the value will be appended to the name of
the request log file created. 4D Server will record any information related to
any incoming requests in that request log file. The log file will be a text file
placed next to the Structure file.

Once the file reaches a size of 10 MB, it is closed and a new file is generated,
with an incremented sequence number. If a file of the same name already
exists, it is replaced.

If you edit one of these files, you can read a collection of values, cryptic to
most people. This technical Note will show you how to manipulate and read
that file.

Structure of the file
--

If you edit this log file in a text editor, it looks like this:

1 nth log opened on Tuesday, January 10, 2006 03:17:09 PM
time pid uid cid request bytes in bytes out duration request name
01/10/06, 15:17:09 4 26268080 26291080 189 24 11 0
01/10/06, 15:17:09 4 26268080 26291080 189 24 11 0
01/10/06, 15:17:09 4 26268080 26291080 189 24 11 0
01/10/06, 15:17:09 4 26268080 26291080 189 24 11 0

The file starts with a line that states the date and time of the creation of the
file. The second line corresponds to the title of these columns. Other
following lines would be values recorded for each incoming request.
As previously stated, it is difficult to understand these values if you do not
understand the titles. Let’s check them right Now.

The first column is time. It contains the date and time of the incoming
request. In our example, date is in MM/JJ/YY, separated by a comma with
the time in 24 hour format.

PID means Process ID. It is the Internal Process ID. This information cannot
be tracked by the developer since it is internal to 4D. It’s an internal process
ID which is different from the process ID that the developer can see from the
Interface or Runtime Explorer.

UID is the User ID. It is also an internal value for 4D Server. It is a number
assigned to any user connecting to the Server. This is not the User ID
defined by the 4D user login account such as Designer or Administrator. It is
an internal value that you can also retrieve in the On Server Open
Connection database method ($1 parameter).

CID is the Connection ID. This is also an internal value for 4D Server. It
allows 4D Server to which connection this process belongs to. This value can
also be retrieved in the On Server Open Connection database method with
the parameter $2.

Request is the Request ID that will tell us what the purpose of the request
is. This is the ID that we need to look at since it will tell us what exactly 4D
Client is performing with 4D Server. The ID is unique and is not self-
explanatory. You will find a brief description for each possible request at the
end of this technical note.

Bytes In is be the size of the incoming packets, size of the received request.
It is interesting to see if 4D Client is sending big packets or Not. For example
simple requests should translate into very small incoming packets. Uploading
records can generate bigger incoming packets.

Bytes Out is the size of the answer to that request. For each incoming
request, 4D Server needs to respond and this value is the size of the
response.
Typically, the response is big when the server is transferring information to
the Client, such as downloading a big record.

Duration is the processing time in milliseconds for the request. It starts
after the request is received, including parameters and indicates the time
lapsed until the reply of the server is sent out. In most cases, the value
should be equal to 0 since each request usually takes less than one

millisecond. Longer processing times occur when too many processes need to
be handled, the network is flooded or the request is time consuming, such as
a big SELECTION TO ARRAY.

Request name is, by default, empty. This is the name of the request. It can
be retrieved if a specific resource has been installed in the resource file of 4D
Server. Unfortunately, this is not very practical since you would have to
recreate the resource each time an upgrade is performed. A quick
workaround would be to store the name of these requests inside your
structure file or data file and not worry about this resource anymore. You will
find the list of all process IDs at the end of this technical note in appendix 1.

How to use the file
--

We can now understand the contents of that file but we still need to know
how to use it. This feature is useful for optimization purposes only. This
feature was first designed by and for 4D engineers to optimize the execution
of 4D commands. Nevertheless, this option can also be useful for 4D
developers if they want to reduce the number of requests between Client and
Server and monitor the actual traffic their application creates.

Why would a 4D developer need to monitor low-level communication? The
network is often the limiting factor in a Client/Server environment. If the
latency is high, your clients will be slower and can also subject to more
timeouts. If the latency is very low, such as on a LAN, adverse effects the
clients can also be affected if too many of them are communicating with the
Server at the same time.

Once a request has been executed, it is written to the log file; so keep in
mind that, if the server receives too many requests, your whole system can
slow-down because of 4D Server writing every request to the log. Accessing
the disk will definitely affect performance on a ‘busy’ server. This is why it is
not recommended to keep that feature always on but rather to use it
carefully.

You can analyze the traffic that your method can generate. Knowing the
number of packets that 4D Client will send for each of your methods can be
very helpful. You may then optimize your code to reduce the number of
packets. There is no direct relation between this and speed. In most cases, if
you are sending fewer requests, you will use less network resources and less
internal execution. Chances are greater to see your code running faster.
However, it is possible that by trying to reduce the network traffic, you could
end up with code that can run a little bit slower. That would be the price to
pay in order to allow other processes to be faster or to allow 4D Server to
handle more requests. This case is rare but it does not mean that it will
never happen.

If you have many clients connected to the server and are worried about
performance issues, it can be a good idea to have a look at all of the
requests. By sorting these requests on the Process ID and Connection ID,
you can see the name of the requests and guess which process this could be.
A quick look can tell you if this can be optimized or if it is normal for that
type of request can be executed that many times.

The Demonstration database
--

The Demonstration database is fairly simple and is provided as a way to
analyze the request log file. As we have seen, we can just execute the SET
DATABASE PARAMETER command with that selector and 4D Server will start
to log all requests.

A text file is generated and you can edit it any text editor application.
However the text file does not contain the name of these requests and it
would be interesting to perform some statistics on those figures too. This is
where our small database comes into play.

1- Start the database with 4D Server and connect with 4D Client.
2- Go to the Custom menu environment.
3- Select Request Log File from the Demonstration menu. A small dialog

will be displayed with 3 buttons:
- Record: This turns the parameter ON or OFF. Click on this button to

start recording all requests.
- Clear: This button executes a stored procedure on the Server to delete

all request log files.
- View: Once we’re recorded the file, click on that button to view it.

As we know, we can have multiple log files. The ID that we’re using will be 1.
You can change that value if needed but this is not really important. The
most important thing to remember is that you can have multiple files for that
ID since a new file will be created when the current file reaches 10 MB.

Let’s assume that we are trying to measure our traffic with multiple clients.
Therefore, 3 log files will be generated in our example.
With a small file, it would be easy to load all data into arrays and display
them in a dialog with a listbox for example. But in our case, it would be
unwise to load the 30 MB into arrays. This is why the database will save our
data into the [Requests] table.

For visibility, the View button will display a dialog where you can view a tab
control and different displays.

- Raw Data: This is a listbox where we can see all requests. Since we
still can’t display 30 MB in arrays, the data will be divided into sets.
The number of records per set can be defined in the same dialog.

Change the number of records per set to increase or decrease the
number of sets but just keep in mind that an increased value will
require more memory since these are arrays. You can sort your
columns and click on the four buttons at the bottom left in order to
navigate thru these sets. When navigating within sets, the sorting
order is kept, thanks to the use of named selections. This can also be
a good example of how to display huge selections with listboxes.

- Mnemonics: This display will generate some statistics based on
mnemonics, i.e. the name of these requests. When importing a log file,
the name of the request will be pulled from the Mnemonics table
according to the Request ID retrieved from the log file. The dialog will
generate statistics from the Requests table by using the quick report
editor. An xml file will be generated by the M_GenerateXMLStats
method. We would just have to read that file and store our values into
arrays. We can see the number of calls that a type of request has been
called and the average and sum for the duration of the call, number of
bytes in and out. This information might tell us if an improvement or
optimization can be plausible.

- Processes: This will follow the same technique used for mnemonics.
The M_GenerateXMLStats2 method will generate an xml file thru the
quick report editor. A sum on Duration, Bytes In and Bytes Out will be
computed per connection and process IDs. The result will be loaded in
arrays and displayed it the current listbox. We can see if a process
requires a lot of time or data transfer. It can tell us which process
deserves more investigation if values are suspicious.

- Graphs: This part allows you to display 5 types of graphs.
o Bytes per Request: This is a 2D Column chart that will show the

sum of Bytes in and Bytes Out per type of request.
o Bytes per time: This is a 2D Line chart that shows the sum of all

bytes In and Out in the time.
o All Durations: This is a 2D Line chart that shows the sum of all

durations for all requests in the time.
o % per request: This is a pie chart, showing the percentage of all

requests based on the type of request.
o Duration per Request: This is a 2D Column chart that will show

the sum of all durations per type of request.

Summary
--

In this technical note, we saw that enabling the request log feature is very
easy. We explained where to retrieve the log files and how to read them.
Those steps are very easy. In a future technical note, we will explain how to
evaluate those figures.

Appendix 1: List of ID and Request Name
--

ID Mnemonics Internal
Short description Request

1 Process_EndOf
End of a process from client Yes

2 Rec_load
Load record No

3 Rec_LoadAndSelect
Load record and reduce current selection to this record Yes

4 Rec_Save
Save record No

5 Rec_GetNumInSelec
Get record number inside selection No

6 Sel_AddRec
Add record to selection No

7 Sel_Dim
Set size of selection (init. of selection) Yes

8 Rec_Delete
Delete record No

9 Sel_RemoveRec
Remove record from selection No

10 Rec_Unload
Unload record No

11 Trans_Start
Start transaction No

12 Trans_Validate
Validate transaction No

13 Trans_Cancel
Cancel transaction No

14 Sem_Set
Set semaphore No

15 Sem_Clear
Clear semaphore No

16 Rec_DeleteSel_Language
Delete selected record (programming language) No

17 Sel_AllRecords
All records No

18 Rec_RecInTable
Count records in table No

19 Set_Convert2Sel
Convert set into selection Yes

20 Sel_Convert2Set
Convert selection into set Yes

21 Rec_SelectedRecNumber
Position of record in current selection No

22 Sel_ReduceToCurrentRec
Reduce current selection to current record No

23 Struct_GetNbTablesAndFields
Get number of tables & number of records per table Yes

24 PRes_Get
Get pseudo resource Yes

25 PRes_Add
Add pseudo resource Yes

26 PRes_Write
Write pseudo resource Yes

ID Mnemonics Internal
Short description Request

27 Obsolete_PRes_
Count Obsolete Yes

28 Obsolete_PRes_
CountKind Obsolete Yes

29 PRes_Remove
Remove pseudo resource Yes

30 PRes_GetInd
Get pseudo resource Yes

31 Obsolete_PRes_GetKind
Obsolete Yes

32 PRes_GetMap
Get map of internal 4D resources at the first connection
of a 4D Client (execute once only per 4D Client) Yes

33 PRes_GetUniqueID
Get new unique pseudo resource ID Yes

34 PRes_GetResFileNum
Get internal resource file reference number Yes

35 Search
Search No

36 Sort
Order by No

37 Sel_CacheSelection
Cache of current selection (send part of cache to client.
Avoid sending a big selection through the network) Yes

38 FlushCache
Flush cache No

39 Rec_DeleteSel_UserMode
Delete selected record (User Mode) No

40 Sel_RemoveRecordFrom
Remove record in a selection
(reduce selection, remove in selection) Yes

41 Pooling
Client keep alive
(Interpreted: 8 seconds, Compiled: 30 seconds) Yes

42 PRes_LoadAndLock
Load & Lock a pseudo 4D resource No

43 PRes_Unload
Unload a pseudo resource on server Yes

44 Auth_Challenge
Send password Yes

45 PRes_WhoLock
Who lock a pseudo 4D resource Yes

46 Auth_GetUserInfo
Get user information No

47 Ind_Drop
Drop index No

48 Ind_Create
Create index No

49 Sel_MoveToRec
Goto in selection, without loading the record Yes

50 Struct_GetTableDesc
Get table description Yes

51 Struct_CountTables
Count tables No

52 OPEN_GetAllFields
Load a record and send all fields (Used by 4D Open) No

ID Mnemonics Internal
Short description Request

53 OPEN_UnlockRecord
Unload all records from a table (4D Open) No

54 OPEN_ModifyRecord
Modify record - all fields (4D Open) No

55 OPEN_NewRecord
New record (4D Open) No

56 OPEN_TrueGetRes
Not used (4D Open) No

57 Obsolete_TrueGetIndRes
Obsolete No

58 Obsolete_TrueGetResInfo
Obsolete No

59 Obsolete_TrueWriteRes
Obsolete No

60 Plug_GetList
Get list of plug-ins Yes

61 Obsolete_Plug_GetListExt
Get list of externals (Obsolete) No

62 Obsolete_GetCatList
Obsolete No

63 PRes_GetByName
Get a pseudo resource by name Yes

64 OPEN_GetRelatedFields
Get a record and related records (4D Open) No

65 OPEN_GetFieldNumberFromTables
Get fields number from all asked tables (4D Open) Yes

66 Struct_AddTable
Create table No

67 Plug_AddTable
Add table by plug-in No

68 Obsolete_ChangeCurrentTable
Obsolete No

69 Proc_GetList
Get process list incl. related information Yes

70 Obsolete_lockfile
Obsolete No

71 Obsolete_unlockfile
Obsolete No

72 Auth_ChallengeInfo
Indicate to 4D Client if password should be used Yes

73 Auth_Test
Test password No

74 User_GetList
Get list of users No

75 User_WritePassword
Write modified password No

76 Auth_TestPassword
Test user password Yes

77 User_WriteGroups
Write groups No

78 User_TestRights
Test user rights No

79 SearchByKey_Internal
Query by index - Unique (Used by link) Yes

80 User_WriteGroupsDesigner
Write groups No

ID Mnemonics Internal
Short description Request

81 User_GetUsersAndGroups
Get list of users & groups Yes

82 User_WriteUsersAndGroups
Write list of users & groups Yes

83 Sel_Copy
Copy selection No

84 Sel_Use
Use selection No

85 Sel_Delete
Delete selection No

86 Sel_Move
Move selection Yes

87 Obsolete_Sel_Replace
Obsolete No

88 Rec_SequenceNumber
Sequence Number No

89 Rec_LoadAndSendData
Load record and send data (fields) No

90 Rec_LoadForModifyDisplaySelection
Load record, called by Modify Selection, Display Selection
or sub form. Yes

91 Sel_SelectionToArray
Selection To Array No

92 Sel_ArrayToSelection
Array To Selection No

93 Sel_RelateMany
Relate Many No

94 OPEN_DistinctValues
Distinct Values (4D Open) No

95 Table_ReadOnly
Read Only No

96 Table_ReadWrite
Read Write No

97 SearchInSelection
Query Selection No

98 Obsolete_AddRecToSet
Obsolete No

99 OPEN_GetListNamesTables
Get list of table name (4D Open) No

100 Obsolete_Set_Empty
Obsolete No

101 User_NbConnected
Number of connected users No

102 User_NbUserProcess
Number of user process No

103 Math_Sum
SUM (on field) No

104 Math_Average
Average (on field) No

105 Math_Min
Minimum (on field) No

106 Math_Max
Maximum (on field) No

107 File_ReadFromDiskAndSendToClient
Read file from disk and send it to a client Yes

108 File_SendToServerAndWriteOnDisk
Write a file on disk sent from a client Yes

ID Mnemonics Internal
Short description Request

109 Plug_ReadData
Communication from a plugin (on client side) and server,
To read on server Yes

110 Plug_WriteData
Communication from a plug-in (on client side) and server,
To write on server Yes

111 Bck_SetCurrentLogFile
Set current log file No

112 Bck_FullBackup
Execute backup No

113 Bck_IncBackup
Increment backup No

114 Set_ConvertListOfRecIntoSet
Convert a selection from a displayed list into a set Yes

115 Ind_CancelCreationRequest
Creation of index request cancelled No

116 Bck_SendInfoToBackup
Send information to backup No

117 Struct_GetTimestamp
Read timestamp from resource 4D4D, to update files .res
and .rex Yes

118 Obsolete_PRes_CountKindStruct
Obsolete No

119 Obsolete_getindtypestruct
Obsolete No

120 Obsolete_countresstruct
Obsolete No

121 Struct_SendForkToClient
Send fork side to a client Yes

122 Sel_Join
Join No

123 Sel_Reduce
Reduce selection No

124 Ind_Scan
Scan index No

125 Rec_WhoLock_Language
LOCKED ATTRIBUTES (programming language) No

126 CurrentDateFromServer
Current date (*) No

127 CurrentTimeFromServer
Current Time (*) No

128 Sel_AutoLink
Automatic links No

129 Sel_CheckKind
Check if current selection is a selection and not a set Yes

130 Struct_SendAvailableAutoLink2Server
Send a list of tables available for automatic links to server Yes

131 Sel_AddRec
Add record to selection No

132 User_UpdatePluginsRightsAccess
Update plugins authorisation rights Yes

133 File_TestFilePath
Verify if a file exists on server Yes

134 Rec_SequenceNumberManagement
Sequence Number Management Yes

135 Rec_Lock
Lock record No

ID Mnemonics Internal
Short description Request

136 Rec_Push
Push record No

137 Rec_Pop
Pop record No

138 Obsolete_searchanddelta
Obsolete No

139 Obsolete_setindex
Obsolete No

140 Obsolete_liaisonfatale
Not used Yes

141 OPEN_GetRelatedFieldsFormatted
Get related fields of a selection incl. format (4D Open) No

142 Trans_GetNbNewRecInside
Get number of created records during a transaction Yes

143 Plug_Get4DXCatInfo
Get a description of folders Mac4DX, Win4DX and Plugins No

144 File_SendFromServerToClient
Send a file from server to client Yes

145 Plug_CheckPluginsRightAccess
Check and give access rights for plugins No

146 Proc_ExecuteOnServer
Execute on server No

147 Proc_FindByName
Process number No

148 Proc_SetProcessVar
Set process variable from client to a process on server No

149 Proc_GetProcessVar
Get process variable from a process on server to client No

150 Search_SetLimit
SET QUERY LIMIT No

151 Search_SetDestination
SET QUERY DESTINATION No

152 Set_IsIn
Is in set tests whether or not the current record for the table
is in set. No

153 Set_RecordsIn
Records in set Yes

154 Set_Create
CREATE SET No

155 Set_CreateEmpty
CREATE EMPTY SET No

156 Set_Add
ADD TO SET No

157 Set_Send
Send a set to server Yes

158 Set_Get
Get a set from server Yes

159 Set_Delete
CLEAR SET No

160 Set_Use
USE SET No

161 Set_Operation
Operation on set (Difference, Intersection, Union, etc) Yes

162 Set_Copy
COPY SET No

ID Mnemonics Internal
Short description Request

163 Struct_UpdateInformation
Modify an object in design mode. Update request on other
4D Clients No

164 Set_GetList
Get list of all sets Yes

165 Sel_GetList
Get list of all selection Yes

166 Sel_DistinctValues
Distinct Values No

167 Set_FindTableFrom
Return table from a set Yes

168 PRes_GetIDByName
Get ID of a pseudo resource by name Yes

169 PRes_GetNameByID
Get name of a pseudo resource by ID No

170 PRes_WriteName
Write name of a pseudo resource by ID Yes

171 Array_RecNumsToSelOrSet
Array longint containing rec.number to selection or set No

172 Struct_SetDBParam
Set database parameter No

173 Proc_RegisterClient
Register client No

174 Proc_UnregisterClient
Unregister client No

175 Proc_GetListRegisteredClients
Get Registered Clients No

176 Proc_ExecuteOnClient
Execute on Client No

177 Proc_GetRequestProcToExec
Check if a client has a method to be executed (execute on
client) Yes

178 Obsolete_UnlockRecords
Obsolete No

179 Plug_ValidateUserInfo
Management of password for plugins Yes

180 Plug_CheckUserInfo
Management of password for plugins Yes

181 Plug_GetListOfGroupsAndUsers
Management of password for plugins No

182 Plug_IsAdmin
Management of password for plugins No

183 Array_SelToRecNums
Selection to array longint No

184 Search_QueryWithArray
Find in array No

185 Struct_GetDataFile
get name of current data file No

186 Plug_SerialKey
Serial key (SDK) No

187 User_RegistrationProperties
User name & company name (product registration) Yes

188 User_NbCurrentUsers
Number of current users vs. number of licences available Yes

189 Rec_LoadForModifyDisplaySelection_New
Load record to use with display selection, modify selection
or sub form Yes

ID Mnemonics Internal
Short description Request

190 Struct_IsDatabaseLocked
Is data file locked? No

191 User_IsDemo
Run in demo mode? Yes

192 Struct_GetDBType
Compiled or interpreted mode? No

193 Struct_GetLastOpeningMode
Last opening mode (compiled or interpreted) Yes

194 PRes_GetListPseudoResources
Get list of files containing pseudo resources (.4DB, .4DA,etc.) No

195 Struct_Update4DClient
Automatic update from 4D Client No

196 Auth_Challenge2
see sendID (optimized) No

197 Bck_GetLastBackupInformation
Get information from last backup No

198 Bck_GetLastRestoreInformation
Return information from last restore No

