
OCI Mapper 2004-3

By Josh Fletcher, Technical Support Engineer, 4D, Inc.

Technical Note 06-06

Abstract
--

This Technical Note accompanies an updated version of the OCI Mapper component,
which was introduced in Technical Note 03-44, “Migrating from 4D for Oracle to 4D
for OCI using OCI Mapper”. The main focus of this Technical Note is to summarize
the updates that have been made to the OCI Mapper and provide more insight into
4D for OCI programming, both on its own, and in comparison to 4D Oracle.
Installation procedures for the OCI Mapper component are included.

This Technical Note is the first part of a two-part OCI Mapper update. In the next
part of the release a debug version of the OCI Mapper will be provided. This version
will feature the logging of OCI Mapper methods as well as 4D for OCI calls to a text
file in order to facilitate advanced analysis of 4D for OCI programming problems.
The reason for the two-part release is the debugging code tends to make the OCI
Mapper methods harder to read.

Introduction
--

The focus of this Technical Note (and the OCI Mapper component) is two-fold:

• For 4D Oracle databases the OCI Mapper provides a transition from 4D
Oracle to 4D for OCI without modification of the source code.

• For developers who are new to 4D for OCI (or OCI programming in general)
the OCI Mapper demonstrates how to implement a framework that provides
higher-level commands than those found in 4D for OCI.

4D Oracle developers should find useful comparisons between 4D Oracle commands
and 4D for OCI commands in this Technical Note and a robust introduction to 4D for
OCI programming via the OCI Mapper component.

4D for OCI developers should find the OCI Mapper useful as a demonstration of how
to implement a high-level, API-like framework for 4D for OCI development.

In updating the OCI Mapper an attempt has been to both fix bugs in the original
design as well as point out highlights of the design, how it differs from 4D Oracle,
and what areas might need improvement.

Please note that the OCI Mapper component is provided as “open source”. The
developer is free to modify the OCI Mapper code at will and, in fact, is encouraged
to do so.

It should be noted that the majority of the modifications made to the OCI Mapper
have been documented in the code. That is, the original code is retained
(commented) along with the new code to demonstrate why the changes were
made. In some cases these are simple bug fixes, but in many cases a change might
highlight a particular hurdle to OCI programming. In other words, the old code is
retained as a demonstration of what not to do when you are developing with 4D for
OCI.

Also note that, in an attempt to not cover previously addressed topics, performance
comparisons between 4D Oracle and 4D for OCI are not covered in this Technical
Note. Please see Technical Note 03-44, “Migrating from 4D for Oracle to 4D for OCI
using OCI Mapper” if you would like to see some benchmarking comparisons of the
two plug-ins.

Overview of 4D Oracle and 4D for OCI
--

Adapted from Technical Note 03-44, “Migrating from 4D for Oracle to 4D for OCI using OCI Mapper”

Both 4D Oracle and 4D for OCI are connectivity plug-ins. They provide a set of 4th
Dimension external routines that allow 4th Dimension to communication with Oracle
databases. Their basic functionalities are to display, manipulate, and modify data
stored in an Oracle database. Combining these plug-ins with 4th Dimension’s rapid
user-interface development makes for a great environment to create front-end
applications for Oracle databases.

However, the two plug-ins differ in their level of support for 4D and Oracle
development:

Supports 4D for Oracle 4D for OCI
4D 2004 No Yes

High-Level Commands Yes No
Low-Level Commands Some Yes

OCI Driver/Oracle Client Version 7.x or 8.x Version 8.1.6 or higher

Notice that, in order to continue Oracle development in 4D 2004, 4D for OCI must
be used. At the same time, the high-level commands that existed 4D Oracle are
gone.

Advantage of using 4D for OCI over 4D Oracle

Why use 4D for OCI instead of 4D Oracle?

The simplest answer is, of course, that 4D Oracle no longer exists for the most
recent version of 4th Dimension (2004). However, there are better reasons as well.

4D Oracle provided many high and low-level commands, which allowed the
developer to accomplish many different tasks. At the same time the design of 4D

Oracle was more restrictive and did not allow the developer to alter the way the
commands worked.

On the other hand 4D for OCI provides extremely low-level commands, allowing the
developer to implement customized solutions in their database. Because 4D for OCI
is flexible and the commands are low-level the developer is in control of their
Oracle programming.

It was also shown in Technical Note 03-44 that 4D for OCI code executes much
faster than 4D Oracle.

Where does the OCI Mapper fit in?

The drawback to using 4D for OCI is also its strength: low-level commands.
Developing a database using only low-level 4D for OCI commands
represents a tremendous amount of coding. It is desirable to “wrap” the 4D
for OCI commands into an API-like framework that fits the target design.
The OCI Mapper is one such framework.

Introduction to the OCI Mapper
--

The OCI Mapper is a framework that emulates the high-level commands found in
4D Oracle. It is provided in the form of a 4D component (including source code). Its
methods were implemented with the native 4D language and 4D for OCI
commands.

Architecture

Here is how the OCI Mapper fits into the Oracle development picture:

OCI Mapper

4D for OCI

OCI Library

Framework Level

Plug-in Level

API Level

In the above diagram the framework would be provided by the developer, the plug-
in is provided by 4D, and the API is provided by Oracle.

OCI Mapper 2004-3 in-depth
--

The OCI Mapper 2004-3 provides a host of fixes and improvements to the original
design. In this section you will find highlights from this update as well as important
information for 4D Oracle and 4D for OCI developers.

4D Oracle Developers

The main purpose of OCI Mapper for 4D Oracle developers is to provide an upgrade
path from 4D 2003 to 4D 2004, and thus 4D Oracle to 4D for OCI, that does not
require modification of the source code in the database. The OCI Mapper
component uses the same command names as 4D Oracle, and emulates the
behavior of those commands. The idea is to allow the older 4D Oracle database to
be up and running with 4D for OCI as quickly as possible.

The secondary purpose of the OCI Mapper for 4D Oracle developers is to
demonstrate how 4D for OCI programming differs from 4D Oracle. Thus it is
advisable not to treat the OCI Mapper as a solution, but rather as a learning tool.

4D for OCI Developers

The main purpose of OCI Mapper for 4D for OCI developers is to provide an
example of how to implement a framework that wraps 4D for OCI commands into
useful, high-level commands.

Again, it is advisable not to treat the OCI Mapper as a solution, but rather as a
learning tool.

Important Notes For OCI Mapper 2004-3

This section highlights important issues with the OCI Mapper.

Concurrent Cursors

While the OCI Mapper does provide support for multiple, concurrent cursors
(via arrays to track the state of the cursors) multiple sets of output
parameters are not supported.

For example, given cursor1 and cursor2:

• Define output parameters for cursor1.
• Define output parameters for cursor2.
• Execute cursor1.

• Fetch results.

In this case the results are fetched into the output parameters for cursor2,
not cursor1. Instead of doing this, do:

• Define output variables for cursor1.
• Execute cursor1.
• Fetch results.
• Close cursor1.
• Repeat for cursor2.

Alternatively the developer is free to modify the OCI Mapper to support
multiple sets of output parameters.

Error Handling

There are instances in the OCI Mapper code where 4D for OCI calls are
executed but there is no subsequent error handling block. However in these
cases it is important to understand that, were an error to have occurred,
something is most likely fundamentally at fault with the design of the OCI
Mapper. This is as opposed to a situation where error handling is needed to
address “normal” behavior and branch code accordingly.

For debugging purposes it is often helpful to install a custom error handler
using OD ON ERROR CALL (the CheckError method may be used). This way,
anytime a 4D for OCI error occurs, some form of error handling will be in
place. Additionally, as mentioned before, a version of the OCI Mapper with
debug logging will be made available.

Of course the developer is free to modify the OCI Mapper to implement
greater error-handling coverage.

LOBs

The OCI Mapper does not currently support Large Object (LOB) types. LOBs
are BLOB and Picture in 4D, RAW, LONG RAW, BLOB, CLOB, and NCLOB in
Oracle.

In OCI programming LOB data can not simply be bound or fetched as part of
a normal statement execution. Once a statement has been executed, extra
OCI code is needed to perform the LOB operations (basically copying of the
LOB data is done in a manual fashion).

Should a developer wish to add LOB support to the OCI Mapper, the methods
of interest would be OD BIND TOWARDS 4D (for defining output
parameters), OD BIND TOWARDS SQL (for defining input parameters), OD
EXECUTE CURSOR (where the statement is actually executed), and OD Load
rows cursor (where the data is fetched).

Important Method Notes for OCI Mapper 2004-3

This section covers important information about specific methods in the OCI Mapper
2004-3.

Method: CheckError

This method is the error handler used by the OCI Mapper to check 4D for OCI
errors. It can also be installed as a custom error handler via the OD ON
ERROR CALL command. This method was completely re-written for OCI
Mapper 2004-3. The most important changes are:

• An error message is generated for all error cases.
• An OCI error handle can contain multiple error records. CheckError

will now iterate through the error records in the error handle.
• Code was added to facilitate the use of OD Last Error.
• Removed all 4D for OCI calls (placed in oci_tool_GetErrorInfo for

more general use)

If the developer is unfamiliar with OCI error handling it is highly
recommended to take a good look at CheckError.

Method: OD BIND TOWARDS 4D

A note to 4D Oracle developers: the word “bind” here is a misnomer. In OCI
programming output parameters are “defined”, not bound. Thus, a more
correct name for this command might be “OD DEFINE OUTPUT
PARAMETERS”.

Method: OD Clone 4D Table

This method is used to creates a copy of a 4D Table in Oracle. There are
some important considerations however:

• Subtables are not supported.
• While the option exists in the UI to copy BLOBs and Pictures these types

are not currently supported by the Mapper (see notes for LOBs).

Method: OD Cursor state

This method was unreliable in the previous version of the OCI Mapper
because areas of the OCI Mapper code were not correctly updating the cursor
state. This has been fixed.

Method: OD Execute object

This method does not support the execution of objects located in Oracle
packages. Extra OCI code is needed to iterate through the package and
locate the desired object.

Method: OD GET SERVER LIST

This method is used to get entries from the “tnsnames.ora” file. It uses the
4D for OCI method OCIGetTnsnamesPath to get the location of the Oracle
Home directory. Unfortunately OCIGetTnsnamesPath does not currently
support Oracle 10g. The location of the ORACLE_HOME registry key was
changed in Oracle 10g so OCIGetTnsnamesPath does not look in the correct
location to find the Oracle Home directory.

The developer can workaround this issue by either locating the Oracle Home
in some other fashion or creating the registry key needed by
OCIGetTnsnamesPath. The needed key is:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ORACLE_HOME

Method: OD Last Error

This method did not function at all in the previous version of the OCI Mapper.
This has been fixed. See the header comments for CheckError for more
information.

Note: "error" in this case means that the return value of a 4D for OCI call
was OCI_ERROR. OD Last Error will not report things like OCI_NO_DATA or
OCI_SUCCESS_WITH_INFO as these are not technically *errors*.

Note to 4D Oracle programmers: The only parameter supported from 4D
Oracle is "message". The other parameters that existed in 4D Oracle do not
exist in 4D for OCI. Also, the error codes returned will not be the same as in
4D Oracle. You will need to refer to your Oracle documentation for the
possible error codes. E.g. a return of 936 means the error was ORA-00936.

Method: OD Login

Note to 4D Oracle programmers: the “mode” parameter from 4D Oracle no
longer exists.

Method: OD ON ERROR CALL

Note to 4D Oracle programmers: the parameters passed to your custom
error handler will be completely different than in 4D Oracle. Several of the

parameters that existed in 4D for Oracle simply do not exist in 4D for OCI.
Here is the complete list of the parameters that existed in 4D for Oracle:

$1 Longint Identifier of the object responsible for the error
$2 Longint Code of the error that triggered the error call
$3 Text Description of the error
$4 Longint Error origin(100;200;300)
$5 Longint Position of the error in the command, the number of the

first character of the error from the beginning of the
command text.

$6 Text Name of the command responsible for the error

The parameters $1, $5, and $6 do not exist in 4D for OCI.

Your error handling method must be designed to accept two parameters as
follows:

C_LONGINT($1) Return code from the function that reported the error
(e.g. OCI_ERROR, OCI_INVALID_HANDLE, etc.)

C_LONGINT($2) OCI error handle (the error handle contains error
"records" that have the actual error data in them).

For more details on what to do with the parameters see the source code for
the CheckError method.

Method: OD SET OPTIONS

Note to 4D Oracle Developers: there are several options from 4D Oracle that
are no longer available in the OCI Mapper:

Option Number Description
kNoWait 4 For contexts only. Specifies that an error must

be returned if a lock is found upon opening a
context for which the kWithLock option has
been selected. The query is then of the
SELECT...FOR UPDATE OF...NOWAIT type. In
the opposite case, by default, the query will
wait for the records to be unlocked.

kWithLock 8 For contexts only. Specifies that the context
must lock the result rows. The query will be of
the SELECT… FOR UPDATE OF… type if at least
one bind has the kForUpdate option.

kDistinctLines 16 For contexts only. Specifies that the context
must be activated by adding the DISTINCT
keyword to the SELECT clause of the context
(which removes duplicates in the result rows).
The context is then automatically put in read-
only mode.

kDeferred 64 Allows the program to use the OCI’s deferred
mode while sending requests to an Oracle7
server.

Also the options set with OD SET OPTIONS are set globally in the Mapper and
do not apply to specific objects as in 4D Oracle.

OCI Mapper 2004-3 Command Reference
--

Note that only the high-level commands of the OCI Mapper are listed here. For
information on the low-level, support commands in the OCI Mapper refer to the
source code of the component itself.

All of the commands in the component contain header comments that describe the
purpose of the command as well as list input/output parameters as appropriate.

OD BIND TOWARDS 4D
The OD BIND TOWARDS 4D method allows you to define output parameters.

OD BIND TOWARDS SQL
The OD BIND TOWARDS SQL method allows you to bind input parameters.

OD Clone 4D Table
The OD Clone 4D Table function creates an Oracle table with column definitions
equivalent to a 4th Dimension table.

OD COMMIT
The OD COMMIT method calls OCITransCommit for a given connection.

OD Create cursor
The OD Create cursor function creates a cursor for the specified connection.

OD Cursor state
The OD Cursor state function informs the user of the state of the specified cursor.

OD DROP CURSOR
The OD DROP CURSOR method frees the memory used by a cursor that was
previously created with OD Create cursor.

OD EXECUTE CURSOR
The OD EXECUTE CURSOR method executes the SQL statement associated with a
cursor on the Oracle server.

OD Execute object
The command OD Execute object allows you to execute a stored procedure or
stored function that is not located in an Oracle package.

OD Execute SQL
The OD Execute SQL function enables you to send a SQL query and store results in
4th Dimension fields, variables, or arrays, by specifying a login ID.

OD GET COLUMN ATTRIBUTES
The OD GET COLUMN ATTRIBUTES method allows you to retrieve the types and
sizes of the result columns of a SQL query previously associated with a cursor. This
method can be executed after the SQL statement has been set into cursor using OD
Set SQL in cursor.

OD Get column title
The OD Get column title function allows you to retrieve the title of a result column
following the execution of OD Set SQL in cursor.

OD Get NB Mode
The method OD Get NB Mode allows you to know the current status of the non-
blocking mode.

OD Get options
The method OD Get options returns a longint representing the global options for the
OCI Mapper.

OD GET SERVER LIST
The OD GET SERVER LIST method reads the TNSNAME.ORA file and returns in the
array the list of server definition.

OD Last Error
The OD Last error function returns the number of the last 4D for OCI error. The
error numbers will be listed in the Oracle documentation for the target server.

OD Load rows cursor
The OD Load rows cursor function takes advantage of array processing to load rows
that have resulted from the execution of a SQL query using OD EXECUTE CURSOR.

OD Login
The OD Login function logs into an Oracle server using the login parameters you
specify and returns a connection identifier.

OD Login dialog
The OD Login dialog function displays the Connect to an Oracle Server dialog box
and allows the user to choose a server and to specify a login name and password.

OD Login state
The OD Login state function returns an integer indicating whether or not the
specified connection ID refers to an open connection.

OD LOGOUT
The OD LOGOUT method ends the specified connection.

OD Number of columns
The OD Number of columns function returns the number of result columns in a
query. This function can be used at any time after the OD Set SQL in cursor method
has successfully executed.

OD Number rows processed
The OD Number rows processed function returns either the number of rows loaded
by OD Load rows cursor since the execution of the cursor in the case of a query of
the SELECT kind, or the number of inserted, modified, or deleted rows in the case
of a query of the INSERT, UPDATE, or DELETE kind. Use this function after the
query executes successfully.

OD ON ERROR CALL
The OD ON ERROR CALL method installs an error handling method that will be
executed each time an error occurs. This allows you to control possible execution
errors and override the default error handling.

OD ROLLBACK
The OD ROLLBACK method cancels an Oracle transaction.

OD SET NB MODE
The method OD SET NB MODE allows you to set the non-blocking mode.

OD SET OPTIONS
The OD SET OPTIONS method allows you to specify global options for the behavior
of the OCI Mapper.

OD Set SQL in cursor
The OD Set SQL in cursor function allows you to associate a SQL statement with a
cursor. The method sends the statement to the Oracle server. The statement is
executed when you call OD EXECUTE CURSOR.

Installation Procedures for OCI Mapper 2004-3
--

Note that 4D 2004 and 4D for OCI 2004 are required for the OCI Mapper 2004-3.

Installing the OCI Mapper into a new database

1. Open the database with 4D Insider.
2. Open the Components menu and select Install/Update...:

3. Browse for the “OCI Mapper 2004-3.4CP” file and click the Open button.
4. 4D Insider installs the OCI Mapper component. Be sure to copy the

“OCI_Mapper” table:

5. Quit 4D Insider.
6. Open the database with 4D.
7. Insert the method OCI_TOOL_INITVAROCI in the On Startup database

method.
8. Finally be sure that the 4D for OCI plug-in is installed in the database.

Upgrading a previous version the OCI Mapper

1. Open the database with 4D Insider.
2. Open the Components menu and select Install/Update...

3. Browse for the “OCI Mapper 2004-3.4CP” file and click the Open button.
4. 4D Insider installs the OCI Mapper component. If you see this error move on

to step 5:

5. First uninstall the previous version of the OCI Mapper. Open the Main pop-up
menu and select Groups & Components:

6. Select the OCI Mapper component:

7. Open the Components menu and select Uninstall…:

8. Click the OK button to uninstall the OCI Mapper.
9. Repeat steps 1 through 4 to install the new version of the OCI Mapper.

Upgrading a 4D Oracle database with the OCI Mapper

1. Open the database with 4D Insider.
2. Open the Components menu and select Install/Update...

3. Browse for the “OCI Mapper 2004-3.4CP” file and click the Open button.
4. 4D Insider installs the OCI Mapper component. Be sure to copy the

“OCI_Mapper” table:

5. Quit 4D Insider.
6. Open the database with 4D.
7. Re-tokenize all methods that use 4D Oracle commands.
8. Quit 4D.
9. Remove the 4D Oracle plug-in in the Win4DX and/or Mac4DX folders.
10. Install the 4D for OCI plug-in.
11. Finally be sure to call OCI_TOOL_INITVAROCI at the startup of your

database and oci_tool_Initprocvar at the start of each new process that
will use the OCI Mapper.

Useful Resources
--

Useful 4D Resources

4D Oracle documentation:
ftp://ftp.4d.com/ACI_PRODUCT_REFERENCE_LIBRARY/4D_PRODUCT_DOCUMEN
TATION/PDF_Docs_by_4D_Product_A-Z/4D_Oracle/

4D for OCI Documentation:
http://www.4d.com/products/downloads_4d.html
(Included with the 4D 2004 All-in-One Installer package)

Useful Oracle Resources

Oracle Call Interface Programmer's Guide, 10g Release 2 (10.2):
http://download-
west.oracle.com/docs/cd/B19306_01/appdev.102/b14250/toc.htm

Oracle Call Interface Programmer's Guide, Release 8.1.6
http://download-west.oracle.com/docs/cd/A87862_01/NT817CLI/index.htm

Conclusion
--

The OCI Mapper provides a way to easily migrate your database from using 4D
Oracle to 4D for OCI. This can help minimize the time and cost in of 4D for OCI
development. Additionally the OCI Mapper provides a good example of how to build
a framework for 4D for OCI, which can ease the development phase and increase
productivity.

