
Generic full data export/import routine

By Thomas Maul, General Manager, 4D Germany.
TN 06-07

Introduction
--

This Tech Note introduces a generic 4D method which exports or imports a whole
database in XML format, including pictures, BLOBs and subtables.

A full text export/import always proves useful for long-term archiving and to repair
damaged data files. Exporting all data in text only mode and re-importing into a newly
created data file guarantees a clean data and indexes. Besides, it produces a perfectly
defragmented data file, which increases sequential access speed.

The sequence number for each table is automatically restored.

All the code is in a single method, this allows easy installation (copy&paste) into
existing structures.

Installation
--

Copy the method “ExportImport” either from the example database (which contains
only this method) or from text file “ExportImport.rtf” (which can be opened with most
text editors on all platforms).
Create a method named “ExportImport”. The name must be exactly “ExportImport”, if
you want to use another name you need to modify the method to reflect that change.
Paste the contents of the clipboard.
If you compile using “All variables are typed” you need to copy the following lines into
a Compiler_xxx method:

C_TEXT(ExportImport ;$0;$1;$2)
C_POINTER(ExportImport ;$3)
C_LONGINT(ExportImport ;$4)
C_BOOLEAN(EXPORTIMPORT_STOP)

The method uses only one process variable, “ExportImport_Stop”. The variable can be
used to stop an export/import, by example from an ON EVENT CALL method.

Usage
--

The method can be directly executed from the User mode. If it is called without any
parameter; it will open a window to ask if you want to export or import; then it will
request to select an export/import folder.

During the export it creates one file for each table. Even if 4D can handle files larger
than 2 GB on Windows XP, it may introduce problems on Mac OS, so the code
automatically segments the files and starts additional files at 1.5 GB. The file is in XML
format, pictures and blob fields are encoded as Base64.

Note for the import:
The routine automatically deletes existing records and then start the import. It is
supposed to be used in an empty (newly created) data file.
Existing indexes are removed before importing and are then recreated. This improves
the import speed and helps to have records and index pages with little fragmentation.
The sequence number is automatically restored.

Two parameters allow you to integrate the method in your own user interface:

Result := ExportImport(direction; path)

Parameter Type Description
Direction String Import or Export
Path String path to export/import folder

Example:
$result := ExportImport ("Export";"C:\\myxmlfolder")
$result := ExportImport ("Import";"C:\\myxmlfolder")

Table/Field names
--

The method automatically converts table and field names to XML conform tag names.
Diacritical characters are replaced with “_”, similar field names with leading digits.

Example:
Straße -> Stra_e
2address -> _2address

History
--

Tech Note 01-43 described a similar concept using components. Using 4D 6.7 the
code was more complex and more difficult to install. Furthermore this new version
supports automatically subtables and sequence numbers.

