Making Quick Reports Compatible with Excel

By Yvan Ayaay, Technical Support Engineer, 4D Inc.
TN 06-08

Introduction

The Quick Report is one of the tools in 4D that allows you to generate reports. One of
the report formats that can be generated is an HTML file type. The template used to
generate this type of output contains tags that can also be used to generate an XML
type output. With an XML output, it can easily be imported into XML-supporting
applications, one of which is Microsoft Excel. In this technote, it will be illustrated how
to generate an XML output with Quick Report that will be compatible with Microsoft
Excel (Excel 2003).

Abstract

The output type generated by Quick Report can be to a printer, to a text file, to an
HTML file, to a 4D View or to a 4D Chart. When setting the destination into an HTML
file, a template is used to construct the report in HTML format. This template uses set
of tags to process the data in order to retain a layout close to the original report or to
adapt to a custom HTML layout. The tags used in this template can somehow be
manipulated not only to generate HTML file but to generate an XML file as well.
Microsoft Excel (Excel 2003) supports XML. It can parse custom XML that follow a
certain schema and it can also open XML Spreadsheet, which is its own XML format.

In this technote, the feature of the Quick Report to set the destination to an HTML file
will first be discussed. The HTML template used for this feature and some of the
functions of this template’s tags will be described. Next, it will be shown how these
sets of template tags can be used to generate an XML output with Quick Report
commands. Two XML formats that are compatible with Microsoft Excel (2003) will be
generated. One is the custom XML format and the other is the XML Spreadsheet
format (also known as SpreadsheetML) which is Excel’s own XML format.

Quick Report Output: HTML File

A report can be generated using the Quick Report editor or programmatically using

Quick Report commands. The destination of the output can be to a printer, a text file,
an HTML file, a 4D View or 4D Chart. When the output is set to an HTML file, an HTML
template that consists of tags is used to build an HTML file. A default HTML template

is used but a customized template can be created and used to generate a customized
HTML layout.

Below is a sample code that procedurally constructs a Quick Report and generates an
HTML file output:

"Method: GenerateHTMLFile
C_TEXT(MyTemplate;MyValTex;$path)
C_LONGINT(QRArea)
$path:="myQR.htm|"

QRArea:=QR New offscreen area °= Create a QR offscreen area
QR SET REPORT TABLE(QRArea;Table(->[Customerinfo])) "Set Customer table as the current table for
QR area

QR INSERT COLUMN(QRArea;l;->[Customerinfo]FName) ‘Insert FName field as 1st column
QR INSERT COLUMN(QRArea;2;->[Customerinfo]lLName) ‘Insert Lname as 2nd column

QR INSERT COLUMN(QRArea;3;->[CustomerinfolCompany) “Insert Company as 3rd column
QR INSERT COLUMN(QRArea;4;->[Customerinfo]Years) ‘Insert Years as 4th column

QR INSERT COLUMN(QRArea;5;->[Customerinfo]Status) ‘Insert Status as 5th column
ARRAY REAL($aColumns;1)

$aColumns{1}:=1 “Array for column to order.

ARRAY REAL($aOrder;1)

$aOrder{1}:=-1 * Array for sort order. Negative 1 for descending and positive 1 for ascnding.
QR SET SORTS(QRArea;$aColumns;$aOrder) ~ Set the sort order based on column

QR SET DESTINATION(QRArea;qr HTML file ;$path) ~ Set destination to HTML FILE

ALL RECORDS([Customer])

QR RUN(QRArea) "Executes Quick Report.

QR DELETE OFFSCREEN AREA(QRArea) = Delete QR offscreen area

The HTML file that is generated will display data as shown below:

FName LName Company Years Status
Richard Nixon XYZ Corp 10 |Active
John |Adams CDE Inc. |5 Active
Jim Carter ABC 12 |Retired

The code above uses the default HTML template to create the HTML output. The QR
SET HTML TEMPLATE command (http://www.4d.com/docs/CMU/CMUQ0745.HTM) can be
used to set a different or customized HTML template that will be used to generate the
Quick Report output. This customized template stored in a text variable passed as
parameter to the QR SET HTML TEMPLATE command uses set of tags to handle data in
order to construct a customized HTML layout. Moreover, these tags can be
manipulated to generate an XML format Quick Report output as well.

HTML Template Tags

Below are some of the HTML template tags used in the later examples and their
description:

<!--#4DQRheader--> ... <!--/#4DQRheader--> - The contents included between
these tags come from the column titles.

<!--#4DQRrow--> ... <!--/#4DQRrow--> - The contents included between these tags
are repeated for each data row.

<!--#4DQRcol--> ... <!--/#4DQRcol--> - The contents included between these tags
are repeated for each data column within a row. The order of the columns follows the
order in the report. With this tag, a column number (n) can also be specified
<4DQRcol;n--> ... <!--/#4DQRcol;n--> to insert data from a certain column number.
For instance, <!--#4DQRcol;2--> ... <!--/#4DQRcol;2--> will insert data from the
second column.

<!--#4DQRdata--> - This tag will be replaced by the current data for the current cell.

These set of tags can be manipulated to construct an HTML template that will
generate an HTML file of a certain display format. To illustrate how to use these tags,
a simple table with data as shown below will be considered.

CustomerID Name City
111 John Smith Seattle
112 Ben Gordon San Jose

The CustomerID, Name, and City are the column titles of the report. To retrieve these
titles, the tags can be used like below:

<HTML>
<!--#4DQRHeader-->
<!--#4DQRCol-->
<l--#4DQRData-->
<!--/#4DQRCol-->
<I--/[#4DQRHeader-->
</HTML>

This should display an HTML result like this:

CustomerlD
Name
City

And to retrieve the data per row in columns, the tags can be used in the order below:

<HTML>
<I--#4DQRRow-->
<!--#4DQRCol-->
<l--#4DQRData-->
<!--/#4DQRCol-->
<!--/#4DQRRow-->
<HTML>

The HTML output for these tags should look like below when displayed:

112
Ben Gordon

San Jose

111
John Smith
Seattle

The HTML template tags can also be manipulated to generate an XML format output.
The output can then be easily imported into Microsoft Excel (2003). The next section
will discuss how to do this.

Generating an XML Quick Report Output

Microsoft Excel (tested using Office Excel 2003) provides two different kinds of XML
functionality: it allows building a spreadsheet from a basic XML file and it allows
opening a spreadsheet saved in Excel’s own XML format known as XML Spreadsheet.
In this section, it will be illustrated how to generate a template that will allow you to
build a basic XML file that can be parsed by Microsoft Excel and how to construct a
template that will create an XML Spreadsheet or SpreadsheetML that can
automatically be opened by MS Excel.

Generating a Basic XML file

Microsoft Excel (2003) can open an XML document that conform to a schema and
import data from it. XML (Extensible Markup Language) is a data exchange standard
language (for more information about XML, check Technote # 03-48: XML - An
Introduction to Extensible Markup Language). Many applications other than Microsoft
Excel support this format as well. Generating the output of the Quick Report to be of
this type makes it easy to export data into Excel. (note: Microsoft Excel 2003
supports custom XML. Check the version of Excel that you’re using to see if it is
compatible with basic XML.)

The set of HTML tags described in the above section can be used in a customized
HTML template to generate a Quick Report output structured in XML format. The
process of generating the quick report programmatically will be the same using the
HTML File type as destination. The output format depends on the structure of the
template used. Thus, most of the customization will be done in the template to
generate a well-structured XML file.

A report in XML for the simple Customer table with records as shown below will be
generated with Quick Report to show this process.

CustomerID Name City
111 John Smith Seattle
112 Ben Gordon San Jose

Below is a sample XML representation of the above data:

<?xml version="1.0" encoding="1S0O-8859-1"?>
<Customer>
<Customer>
<CustomerID>
112
</CustomerID>
<Name>
Ben Gordon
</Name>
<City>
San Jose
</City>
</Customer>
<Customer>
<CustomerID>
111
</CustomerID>
<Name>
John Smith
</Name>
<City>
Seattle
</City>
</Customer>

</Customer>

To generate a quick report for the above records for the Customer table, the
SampleQR method as shown below can be executed.

"Method: SampleQR

"Description: This method illustrates how to generate a quick report in XML format.
C_TEXT(MyTemplate;MyValText;$path)
C_LONGINT(QRArea)
$path:="XMbasic.xml"
QRArea:=QR New offscreen area °~ Create a QR offscreen area
QR SET REPORT TABLE(QRArea;Table(->[Customer])) "Set Customer table as the current table for QR
area
R INSERT COLUMN(QRArea;l;->[Customer]CustomerID) ‘Insert CustomerlD as 1st column
QR INSERT COLUMN(QRArea;2;->[Customer]Name) ‘Insert Name as 2nd column
QR INSERT COLUMN(QRArea;3;->[Customer]City) = Insert City as 3rd column
ARRAY REAL ($aColumns;1)
$aColumns{1}:=1 “Array for column to order.
ARRAY REAL($aOrder;1)
$aOrder{1}:=-1 ~ Array for sort order. Negative 1 for descending and positive 1 for ascending.
QR SET SORTS(QRArea;$aColumns;$aOrder) ° Set the sort order based on column and in descending
order.
QR SET DESTINATION(QRArea;qr HTML file;$path) ~ Set destination to HTML File
MyTemplate:=ConstructBasic_XML Template (QRArea) ° Customize HTML template
QR SET HTML TEMPLATE(QRArea;MyTemplate)
ALL RECORDS([Customer])

QR RUN(QRArea) 'Executes Quick Report.
QR DELETE OFFSCREEN AREA(QRArea) = Delete QR offscreen area

As you can see in the above code, a quick report is programmatically created with the
Quick Report destination set to an HTML file. A customized template is set as the
current HTML template using the QR SET HTML TEMPLATE command. The text variable
“MyTemplate” contains the customized template to structure the XML file output. The
ConstructBasic_XMLTemplate method as shown below builds and returns this
customized template for the Quick Report area passed to it as parameter.

"Method: ConstructBasic_XMLTemplate

"Description: This method constructs an HTML template that will generate an XML structured output.
" It takes the Quick Report area reference as parameter and returns the customized template
T as text.
C_TEXT($0;$tempText)
C_LONGINT($1;$QRarea;curPos)
C_LONGINT($numCaols;$tableNum;$i;$hide;$rep;$size;$numFields;$fieldNum)
C_TEXT($ColName;$obj;$format;$title;$newLine;$fieldobj)

$QRarea:=$1 "Quick Report area reference
$numCols:=QR Count columns($QRarea) = Count columns in QR area.
$tableNum:=QR Get report table($QRarea) “Get table number of table used in QR area.

$newLine:=Char(13)+Char(10)
$tempText:="" ° template text variable
$tempText:=$tempText+"<?xml version=\"1.0\" encoding=\"<!--#4DQRCharSet-->\"?>"
‘use table name as the root element
$tempText:=$tempText+$newlLine+"<"+Replace string(Table name($tableNum);"* *";" _")+">"
$tempText:=$tempText+Char(13)+" <l--#4DQRRow-->"
‘use table name as tag for each row.
$tempText:=$tempText+Char(13)+" <"+Replace string(Table name($tableNum);" ";"_")+">"

"Based on the number of columns, insert column names as tags with data for the column in between.
“This will be repeated per row.
For ($i;1;$numCols)
"Get information about the column in QR.
QR GET INFO COLUMN($QRarea;$i;$title;$obj;$hide;$size;$rep;$format)
$ColName:=$title
" retrieve column at a specific column number

$tempText:=$tempText+Char(13)+" <!--#4DQRCol;"+String($i)+"-->"
“insert column name as tag per column
$tempText:=$tempText+Char(13)+" <"t+Replace string($ColName;" ";"_")+">"
“insert data in the column tag
$tempText:=$tempText+Char(13)+" <l--#4DQRData-->"
$tempText:=$tempText+Char(13)+" </"+Replace string($ColName;" ";"_")+">"
$tempText:=$tempText+Char(13)+" <l--/#4DQRCol;"+String($i)+"-->"

End for

" insert matching close tags.

$tempText:=$tempText+Char(13)+" <["+Replace string(Table name($tableNum);" ";"_")+">"

$tempText:=$tempText+Char(13)+" <l--/#4DQRRow-->"

$tempText:=$tempText+$newLine+"</"+Replace string(Table name($tableNum);" *";"_")+">"

$0:=$tempText

The XML representation of the Customers table data represents each row of data per
column as set of child elements. The column names are used as element tags and are
repeated for each row of data.

In the ConstructBasic_XMLTemplate method, the XML encoding is first inserted into
the template text variable. Then, the name of the table is used as main root element
tag. Since each row is enclosed in child elements, the column names and its data are
placed within <!--#4DQRrow--> ... <!--/#4DQRrow--> tags so it will be repeated per
row. In the said method, the number of columns in the Quick Report area is retrieved
to get the column names of the columns which are inserted as tags. This is done in a
loop for each column. Within the column tags, the data for each specific column is
retrieved by using the <4DQRcol;n--> ... <!--/#4DQRcol;n--> and <!--#4DQRdata--
> tags. Each tag is paired with its matching closing tag. The contents within the <!--
#4DQRrow--> ... <!--/#4DQRrow--> tags is repeated for each row.

When the SampleQR method is executed, an XML file is generated. When this file is
opened with Excel, a dialog as shown below will be displayed. This is usually the case
when opening a basic XML document. This dialog does not come up when opening an
XML Spreadsheet.

Please select how vou would like ko open this file:

©ifs an 4 :

) As a read-only workbook
() Use the ¥ML Source task pane

o (oms) (o

E‘_W File Edit Miew Insert Format Tools Daka Wi

When you choose the "As an XML list” option, the
data is imported as shown below:

ARNER" RERENIE NN -SR-S Rl N
E10 - b
A | B E oD |
CustomerlD | Name City

111 John Smith | Seattle
112 Ben Gordon San Jose

Fe || R —

Generating an XML Spreadsheet

Starting with Microsoft Excel XP, a new XML functionality has been introduced in Excel
with the use of SpreadsheetML or XML Spreadsheets. This is Excel’s own XML format.

This allows Excel to open this type of document automatically just like it opens .xls or
excel files. No parsing like in basic XML above is being done when this type of
document is opened.

The simple Customer table with its data as shown below will once again be used to
illustrate how to generate this type of XML format.

CustomerID Name City
111 John Smith Seattle
112 Ben Gordon San Jose

Below is a sample XML Spreadsheet for the above Customer table data.

<?xml version="1.0"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
xmins:o="urn:schemas-microsoft-com:office:office"
xmins:x="urn:schemas-microsoft-com:office:excel"
xmins:ss="urn:schemas-microsoft-com:office:spreadsheet"
xmins:html="http://www.w3.0org/TR/REC-htm|40">
<DocumentProperties xmIns="urn:schemas-microsoft-com:office:office">
<Author>IVAN</Author>
<LastAuthor>Yvan Ayaay</LastAuthor>
<Created>2006-02-20T06:13:35Z</Created>
<Company>NONE</Company>
<Version>11.5606</Version>
</DocumentProperties>
<OfficeDocumentSettings xmins="urn:schemas-microsoft-com:office:office">
<DownloadComponents/>
<LocationOfComponents HRef="file:///D:\F__\"/>
</OfficeDocumentSettings>
<ExcelWorkbook xmiIns="urn:schemas-microsoft-com:office:excel">
<WindowHeight>9210</WindowHeight>
<WindowWidth>15195</WindowWidth>
<WindowTopX>0</WindowTopX>
<WindowTopY>30</WindowTopY>
<ProtectStructure>False</ProtectStructure>
<ProtectWindows>False</ProtectWindows>
</ExcelWorkbook>
<Styles>
<Style ss:ID="Default" ss:Name="Normal">
<Alignment ss:Vertical="Bottom"/>
<Borders/>

<Interior/>
<NumberFormat/>
<Protection/>
</Style>
</Styles>
<Worksheet ss:Name="Customer">
<Table ss:ExpandedColumnCount="3" ss:ExpandedRowCount="3" x:FullColumns="1"
x:FullRows="1">
<Column ss:AutoFitWidth="0" ss:Width="56.25"/>

<Row>
<Cell><Data ss:Type="String">CustomerID</Data></Cell>
<Cell><Data ss:Type="String">Name</Data></Cell>
<Cell><Data ss:Type="String">City</Data></Cell>
</Row>
<Row>
<Cell><Data ss:Type="Number">112</Data></Cell>
<Cell><Data ss:Type="String">Ben Gordon</Data></Cell>
<Cell><Data ss:Type="String">San Jose</Data></Cell>
</Row>
<Row>
<Cell><Data ss:Type="Number">111</Data></Cell>
<Cell><Data ss:Type="String">John Smith</Data></Cell>
<Cell><Data ss:Type="String">Seattle</Data></Cell>
</Row>

</Table>
<WorksheetOptions xmlIns="urn:schemas-microsoft-com:office:excel">

<Selected/>
<ProtectObjects>False</ProtectObjects>
<ProtectScenarios>False</ProtectScenarios>
</WorksheetOptions>
</Worksheet>

</Workbook>

As you can see, the spreadsheet begins with XML declaration and processing
information followed by the metadata about the document. The content between the
Worksheet elements is where the data is manifested. The HTML Template tags will be
manipulated to dynamically insert data as they should appear within the Worksheet

tags.

To generate an XML Spreadsheet output, the SampleQR method in the above section
could still be used but instead of calling ConstructBasic_XMLTemplate method to
construct the template, the ConstructXMLSpreadSheet method is called:

"Method: SampleQR

QR SET DESTINATION(QRArea;qr HTML file ;$path) ~ Set destination to HTML File
MyTemplate:=ConstructXML SpreadSheet (QRArea) ° Customize HTML template
QR SET HTML TEMPLATE(QRArea;MyTemplate)

The ConstructXMLSpreadSheet method, as shown below, creates an HTML template
that builds an XML SpreadSheet output.

"Method: ConstructXMLSpreadSheet
"Description: This method creates a template that builds an XML Spreadsheet output. The template is

returned as a text variable.

C_TEXT($0;$tempText)
C_LONGINT($1;$QRarea;curPos;$numRecords)

C_LONGINT($numCols;$numRows;$tableNum;3$i;Shide;$rep;$size;$numFields;$fieldNum)
C_TEXT($ColName;$obj;$format;$title;$newLine;$fieldobj;mytype;$metadataTemplate)
C_POINTER($tablePtr)

$QRarea:=$1

$numCols:=QR Count columns($QRarea) = Count columns in QR

$tableNum:=QR Get report table($QRarea) “Get table number of current table in QR
$numFields:=Count fields($tableNum) "Count number of fields in table
$tablePtr:=Table($tableNum)

$numRecords:=Records in selection($tablePtr->) "Get number of records in selection

ARRAY TEXT(asFields;Count fields($tableNum))

For ($viIField;1;Size of array(asFields)) = get all fieldnames of the fields in the table and save in array
asFields{$vlIField}:=Field name($tableNum;$viField)
End for
‘insert text in template text variable starting with Worksheet element tag
$tempText:="<Worksheet ss:Name=\""+Replace string(Table name($tableNum);" ;" _")+"\">"

‘declare number of columns for the worksheet
$tempText:=$tempText+Char(13)+" <Table ss:ExpandedColumnCount=\""+String($numCols)+"\"
ss:ExpandedRowCount=\""+String($numRecords+1)+"\" x:FullColumns=\"1\"" x:FullRows=\"1\">"
‘Insert the column titles
$tempText:=$tempText+Char(13)+"<!--#4DQRHeader--><Row><!--#4DQRCol--><Cell><Data
ss:Type=\"String\"><!--#4DQRData-"+"-></Data></Cell><!--/#4DQRCol--></Row><!--/#4DQRHeader-->"
$tempText:=$tempText+Char(13)+"<!--#4DQRRow--><Row>"
“Insert column data for each row.
For ($i;1;$numCols)

QR GET INFO COLUMN($QRarea;$i;$title;$obj;$hide;$size;$rep;$format) ~ get column
information

curPos:=Position("]"; $obj)

$fieldobj:=Substring($obj;curPos+1) “$fieldobj contains field name

$fieldNum:=Find in array(asFields;$fieldobj) “find field number

GET FIELD PROPERTIES($tableNum;$fieldNum;$fieldType) ‘determine the type of field

mytype:=GetType ($fieldType) 'GetType function returns the type of data of the field type.

$ColName:=$title * title of the column

$tempText:=$tempText+Char(13)+"<!--#4DQRCol;"+String($i)+"-->" ° content of column at
certain column number will be retrieved

$tempText:=$tempText+Char(13)+"<Cell><Data ss:Type=\""+mytype+"\">" ° declare data type

$tempText:=$tempText+Char(13)+"<!--#4DQRData-->" * insert data in column

$tempText:=$tempText+Char(13)+"</Data></Cell> <!--/#4DQRCol;"+String($i)+"-->" ‘insert

matching closing tags
End for

‘insert the closing tags of the lower part of the XMLSpreadsheet
$tempText:=$tempText+Char(13)+"</Row><!--/#4DQRRow-->"
$tempText:=$tempText+Char(13)+"</Table>"
$tempText:=$tempText+Char(13)+"<WorksheetOptions xmlIns=\"urn:schemas-microsoft-
com:office:excel\">"
$tempText:=$tempText+Char(13)+"<Selected/>"
$tempText:=$tempText+Char(13)+"<ProtectObjects>False</ProtectObjects>"
$tempText:=$tempText+Char(13)+"<ProtectScenarios>False</ProtectScenarios>"
$tempText:=$tempText+Char(13)+"</WorksheetOptions>"
$tempText:=$tempText+Char(13)+"</Worksheet>"
$tempText:=$tempText+Char(13)+"</Workbook>"

$metadataTemplate:=ReadTemp ("XMLtemp2.txt") ‘ReadTemp reads a file that contains a template for
the upper part of the XML Spreadsheet.

$0:=$metadataTemplate+$tempText =~ Concatenate the upper part and the lower part of the XML
Spreadsheet to be returned as template.

In the ConstructXMLSpreadsheet method, the content between the WorkSheet
elements of the XML Spreadsheet is dynamically created. The metadata portion (upper
portion from the top of the sample XML spreadsheet down to the top of the WorkSheet
element tag) of the XML Spreadsheet is stored in a file and is retrieved and
concatenated with the constructed lower portion at the bottom of the method. The
content between the WorkSheet elements tags as shown below is where the data
(including the column titles) are enclosed.

<Worksheet ss:Name="Customer">

<Table ss:ExpandedColumnCount="3" ss:ExpandedRowCount="3" x:FullColumns="1"
x:FullRows="1">

<Column ss:AutoFitWidth="0" ss:Width="56.25"/>

<Row>

<Cell><Data ss:Type="String">CustomerID</Data></Cell>
<Cell><Data ss:Type="String">Name</Data></Cell>
<Cell><Data ss:Type="String">City</Data></Cell>
</Row>

<Row>
<Cell><Data ss:Type="Number">112</Data></Cell>
<Cell><Data ss:Type="String">Ben Gordon</Data></Cell>
<Cell><Data ss:Type="String">San Jose</Data></Cell>
</Row>

<Row>
<Cell><Data ss:Type="Number">111</Data></Cell>
<Cell><Data ss:Type="String">John Smith</Data></Cell>
<Cell><Data ss:Type="String">Seattle</Data></Cell>
</Row>

</Table>

As you can see, the first row in the worksheet contains the column titles. In the
ConstructXMLSpreadsheet, after inserting the Worksheet and Table tags to the
template text variable, the header tag <!--#4DQRheader--> ... <!--/#4DQRheader--
> is inserted. The content within the header tags allows you to retrieve column titles.
To retrieve the title, the <!--#4DQRData--> tag is used. And to get all the column
titles, this tag is enclosed within the <!--#4DQRcol--> ... <!--/#4DQRcol--> tags.
Since the title is enclosed in the Cell and Data tags as you can see in the worksheet
section, the Cell and Data tags and their matching closing tags are also enclosed in
the column tag which is enclosed in the header tag. In this row, the column titles are
repeated as cells within these tags.

After the first row in the worksheet, the data per column is listed per row. Depending
on the type of the data, the data is declared in the Data tag. In order to construct the

data as they appear in the worksheet, the type of data should be dynamically
detected. To do this in the ConstructXMLSpreadsheet method, the field number of
column is initially retrieved to get its property. And based on this, a function is called
(GetType function) that will return the data type either as "Number” or “String”.

To traverse all the columns of the Quick Report, the nhumber of columns in QR area is
first retrieved and then each column is accessed within a loop as shown in the
ConstructXMLSpreadsheet method. This is done after inserting the row for the column
title. Within the loop, information about the column is retrieved that will allow you to
retrieve the field number and check the field property. The GetType function is called
to get the type of field.

In the said method, in order to retrieve information for each row of data, the for loop
is enclosed within the <!--#4DQRrow--> ... <!--/#4DQRrow--> tags which will repeat
the contents within it for every row. Using <!--#4DQRData--> tag within this tag and
enclosing it within <4DQRcol;n--> ... <!--/#4DQRcol;n > tags allows you to retrieve
each data per particular column (n). Enclosing the Cell and Data tags and their
matching closing tags within the column tags will repeat these tags per data of each
column. The type of data is declared dynamically as shown in the
ConstructXMLSpreadsheet method.

After the insertion of the tags to retrieve the data in the ConstructXMLSpreadsheet
method, the matching closing tags for the Worksheet tags are inserted. At this point,
the template text variable contains the lower part of the XML Spreadsheet. The file
that contains the upper part is read from a file to a text variable and then
concatenated with the lower part. The entire template is then passed as the returned
text in the method.

When the sampleQR method is executed using this template, an XML spreadsheet will
be created. It can be automatically be opened by Microsoft Excel that looks like the
output as shown below. No prompt is displayed when this file is opened as it is treated
like an .xlIs or excel file. (Again, this has been tested using Microsoft Excel 2003).

Microsoft Excel - Book1

E‘_W File Edit Miew Insert Format Tools Daka Wi

ARNER" RERENIE NN -SR-S Rl N
E10 - b
A | B E oD |
CustomerlD | Name City

111 John Smith | Seattle
112 Ben Gordon San Jose

Fe || R —

Sample Database

The sample database that comes with this technote shows the two methods in
generating an XML output that will be compatible with Microsoft Excel. When the
database is first loaded, a dialog as shown below is displayed:

4 4th Dimension®

5 ok
Generate XML file Generate XML SpreadSheet
Customer
CustomerlD: Name : City :
111 John Smith Seattle
112 Ben Gordon San Jose
113 Thomas Jefferson Washington
114 John Adams New York
115 Andrew Jackson Orlando
116 Abe Lincoln Detroit
117 James Polk Atlanta
118 Jim Monroe Dallas
119 Mark Wilson Phoenix
200 Jack Johnson Chicago

When you click on the “Generate XML file” button , the list of records is generated as
an XML file. And when you click the “"Generate XML SpreadSheet” button, the list is
generated as an XML Spreadsheet. The name of the generated files and their location
are displayed in an Alert dialog after the click. The Quick Report (done
programmatically) is used to generate these types of output.

Conclusion

The Quick Report with the output destination set to HTML file allows you to generate
an XML output that can be read by Microsoft Excel (2003). Excel 2003 supports
standard XML and its own XML format known as XML SpreadSheet. You can generate
an output that Excel supports with Quick Report by customizing HTML template used
when the destination of QR output is set to HTML file. This template is consisting of
tags that make it possible to dynamically construct an XML output.

