
Catalog Functions in ODBC Pro

By Noreddine Margoum, QA Engineer, 4D S.A.
TN 06-10

Introduction
--

The purpose of this technical note is to demonstrate the use of the ODBC Pro plug-in
commands that describe the catalog of a database.

Catalog functions
--

Note: the term ‘column’ will be used as a synonym of ‘field’.

Databases all have a structure that allows access to information such as the list of
tables, privileges for a given table, etc. This structure is commonly referred to as the
catalog of the database.

Using the ODBC Pro commands of the catalog, you can describe a structure in its
entirety.

The main use for these commands is to:

•build dynamic SQL requests while the application is executing, because the list of
tables and columns can be obtained through the catalog functions
ODBC_SQLTables and ODBC_SQLColumns

•make SQL requests more efficient by taking advantage of relations between tables
and indexes, via the commands ODBC_SQLPrimaryKeys,
ODBC_SQLForeignKeys, and ODBC_SQLStatistics

Below is the list of catalog commands, as well as their description:

Commands Description

ODBC_SQLTables Returns the list of catalog, schemas, tables and table
types in the data source;

ODBC_SQLColumns Returns the list of columns for one or several tables;
ODBC_SQLStatistics Returns a list of statistics (number of records of the

table, number of unique value of the index, etc.) for
one table or returns the list of index associated to the
table;

ODBC_SQLSpecialColumns Returns the list of columns that identify a record in a
unique manner. Returns also, for that table, the list of

columns that are automatically updated when any
column is updated through a transaction;

ODBC_SQLPrimaryKeys Returns the list of columns that are part of a primary
key for a given table. As a reminder a primary key is a
column or a combination of columns that allows you to
uniquely identify a record in a table;

ODBC_SQLForeignKeys Returns the list of foreign keys* for a given table or
returns the list of foreign keys that are pointing towards
a given table. As a reminder, a foreign key for a given
table points to the primary key in another table;

ODBC_SQLTablePrivileges Returns the list of tables and their privileges, the user
that assigns the privilege as well as the user to which
the privilege is assigned;

ODBC_SQLColumnPrivileges Returns, for a given table, the list of columns and the
privileges that are associated to them.;

ODBC_SQLProcedures Returns the list of stored procedures in the data source.
The term of stored procedures is generic and covers
both procedures and functions;

ODBC_SQLProcedureColumns Returns the list of input and output parameters as well
as columns that may constitute the result of the
execution of the procedure. This command determines
also the type of each parameter (Input, Input/Output,
Output) and, if the if the parameter is a column;

ODBC_SQLGetTypeInfo Returns the list of data types supported by the data
source. These data types are used in SQL requests that
define data such as CREATE TABLE and ALTER TABLE.

* To better understand the notion of foreign key and primary key, here is an example:

In this simple case, the [Employee] table contains a primary key Employee_ID.
The table [Service] contains the primary key Service_ID. The primary key is used to
identify each record of the table in a unique manner. There are data systems where
the primary key consists of several columns.

In this case, there is only one foreign key, Service_ID, contained in the [Employee]
table. This foreign key references the table [Service] in the table [Employee]. It
defines the relation of the employee ‘to’ the service. There are data systems where
the foreign key consists of several columns.

All the catalog commands return their results as a sorted list of columns. To retrieve
the data if those columns, you will need to associate a field or a 4D variable to the
column, based on the position of the column.

Using the functions of the catalog
--

General use

C_LONGINT($0) `return code of the method
C_LONGINT($1;$vl_ConnectionID) `Connection ID
C_TEXT($2)
C_POINTER(${3}) ` pointers to array to retrieve data resulting from request
C_LONGINT($vl_StmtID) `statement handle
C_TEXT($vt_CatalogName) `Catalog name
C_TEXT($vt_SchemaName) `Schema name
C_TEXT($vt_TableName) `Table name
C_TEXT($vt_ColumnName) `Column name

$vl_ConnectionID:=$1
$vt_CatalogName:=" "
$vt_SchemaName:=" "
$vt_TableName:=$2
$vt_ColumnName:=" "

 `allocatign the statement handle
vl_Status:=ODBC_SQLAllocStmt ($vl_ConnectionID;$vl_StmtID)
vl_Status:=ODBC_SQLColumnPrivileges
($vl_StmtID;$vt_CatalogName;$vt_SchemaName;$vt_TableName;$vt_ColumnName)
If ((vl_Status=SQL_SUCCESS) | (vl_Status=SQL_SUCCESS_WITH_INFO))

vl_Status:=ODBC_SQLBindCol ($vl_StmtID;4;$3) `column name
vl_Status:=ODBC_SQLBindCol ($vl_StmtID;5;$4) `name of assigner
vl_Status:=ODBC_SQLBindCol ($vl_StmtID;6;$5)
vl_Status:=ODBC_SQLBindCol ($vl_StmtID;7;$6) `privilège
While ((vl_Status#SQL_NO_DATA) & (vl_Status#SQL_ERROR))

vl_Status:=ODBC_SQLFetch ($vl_StmtID)
End while

End if

vl_Status:=ODBC_SQLFreeStmt ($vl_StmtID;SQL_CLOSE)
vl_Status:=ODBC_SQLFreeStmt ($vl_StmtID;SQL_DROP)

Calling the commands of the catalog follows the structure of the code above.

1. Allocating a statement handle (longint) using the connection
handle(ODBC_SQLAllocStmt);

2. Calling the catalog command with the statement handle as the first parameter,
followed by the parameters specific to the command;

3. The execution of the catalog command, when successful, results in the creation of
the sorted list of columns;

4. To each column in the result, we associate a variable or a field. The position of the
column in the result is critical and needs to be indicated at the time of the bind. The
bind Column/Field or variable is set by the following call:
 ODBC_SQLBindCol(HandleRequete;PositionColonne;->VariableouChamp4D) ;

5. Data resulting from the command are retrieved using the command
ODBC_SQLFetch.
The conditions for this command to stop are either an error escalation or the end of
the data retrieval;

6. Closing and freeing the request.

Implementation example

C_LONGINT($0) `return parameter
C_LONGINT($1;$vl_ConnectionID) `Connection ID
C_TEXT($2) `Table name
C_POINTER(${3}) `pointer to the arrays of the column names, and their types and sizes
C_LONGINT($vl_StmtID) `statement handle
C_TEXT($vt_CatalogName) `catalog name
C_TEXT($vt_SchemaName) `schema name
C_TEXT($vt_TableName) `table name
C_TEXT($vt_ColumnName) `column name

$vl_ConnectionID:=$1
$vt_CatalogName:=" "
$vt_SchemaName:=" "
$vt_TableName:=$2
$vt_ColumnName:=" "

 `allocating the statement handle
vl_Status:=ODBC_SQLAllocStmt ($vl_ConnectionID;$vl_StmtID)

vl_Status:=ODBC_SQLColumns
($vl_StmtID;$vt_CatalogName;$vt_SchemaName;$vt_TableName;$vt_ColumnName)
If ((vl_Status=SQL_SUCCESS) | (vl_Status=SQL_SUCCESS_WITH_INFO))

vl_Status:=ODBC_SQLBindCol ($vl_StmtID;4;$3) `column names
vl_Status:=ODBC_SQLBindCol ($vl_StmtID;6;$4) `column types
vl_Status:=ODBC_SQLBindCol ($vl_StmtID;8;$5) `column sizes
While ((vl_Status#SQL_NO_DATA) & (vl_Status#SQL_ERROR))

vl_Status:=ODBC_SQLFetch ($vl_StmtID)
End while

Else
$0:=SQL_ERROR

End if
vl_Status:=ODBC_SQLFreeStmt ($vl_StmtID;SQL_CLOSE)
vl_Status:=ODBC_SQLFreeStmt ($vl_StmtID;SQL_DROP)

Comments on the method:

This method returns the list of columns for a table, as well as their type and size.
It uses the command ODBC_SQLColumns. This method follows the structure
indicated earlier.

Using the Test database

The test database includes the implementation of all the commands of the catalog.

At the launch of the database, the main dialog is displayed (you can also access it
through the File/Demo menu):

By clicking the Connect button, you can select the data source to which you want to
connect. The data source has to be configured in the ODBC data source administrator
window.

Now that the connection is established with the data source, you can use the different
features of the dialog.

Conclusion
--

This technical note demonstrated the use of the ODBC catalog commands to describe
the structure of a database.

