4D System Tool

By Jeremy Sullivan, Developer, 4D Inc.
TN 06-11

Introduction

This Tech Note shows several different examples using Launch External Process. It
should give you an idea of the various possibilities this command makes available.
Launch External Process was added to the language in 4D 2004.

Mac OS X’s underlying Unix layer has many applications and utilities that you can
access via Launch External Process. Almost anything you can do in the Terminal you
can also accomplish with Launch External Process.

When running on Windows you have access to the complete set of DOS commands.

About the Example

4D System Tool is an application that is basically divided into two parts. Since we are
dealing with system calls directly, there is very little that can be used cross platform.
The interface and available commands are therefore completely different under each

platform. To get the most out of the example you should run it on both Mac OS X and
Windows XP if at all possible.

Note that this example assumes you are using Mac OS X 10.4 and/or Windows XP.
None of the examples have been tested on prior versions of the respective operating
systems.

Using the Example — Mac OS X

On Mac OS X the application is similar to utilities such as Cocktail, Onyx, or
TinkerTool. When the application is launched you will have four tool bar buttons
available to you: Appearance, Maintenance, Man, and Info.

ZNEXE) 4D System Tool
Appearance Maintenance Man Info

l Global] Finder [Dock I Safari I Disk Images T Misc]

Place scroll arrows: | | Single arrow at each end
" Double arrows at each end
" Double arrows at Top / Left
f®) Double arrows at Bottom / Right

Crash Reporter: Developer ﬂ

Window animation speed: i)

Fast Slow

(Restore Defaults)

The Appearance tool allows you to change various settings in the Finder, Dock, Safari,
and other applications. You can change the way scroll bars appear, the way the Dock
behaves and displays its icons, disk image handling, and various other settings.

The Maintenance tool allows you to run the Periodic command, repair disk
permissions, update pre-binding, and see some information about the boot disk.

The Man tool allows you to view the Man pages and save them as either PDF or HTML
documents. Man (manual) pages are the documentation that is provided for all of the
various commands available at the Unix layer.

The Info tool shows you various information about the system you are running on,
such as the Kernel version, installed memory, processor speed, etc.

You can also select Execute Command from the File menu to open a dialog that will
allow you to execute any command directly. Please be careful when using this tool as

it will not prevent you from damaging your system if you execute the wrong
command.

Using the example — Win XP

When the application is run on Windows XP you will have a different set of available
commands. The four available tool bar buttons are: Maintenance, Tasks, Quick
Launcher, and Info.

2 Q O

Maintenance Tasks Quick Launcher Info

Defrag
Defragment volume: v|
[] Analysis only
[]Force Defrag Run

Chkdsk

Schedule Check disk for next startup: C: v

With the Maintenance tool you can de-fragment a volume or set a volume to be
checked by chkdsk on the next startup.

The Tasks tool will show you all of the currently running processes and allow you to
quit a process. This is basically the same as the Task Manager when you type control-
alt-delete.

The Quick Launcher displays a list of various tools that you can run from the Run
command. Some of these are available to you through the standard XP interface, such
as Add/Remove Programs, and others are normally only available by running them
from the prompt. You can add or remove programs from the list using the Add and
Remove buttons at the bottom of the window. The list of applications is saved in an
xml file in the Extras folder.

The Info tool shows you various information about the system you are running on,
such as Windows version, installed memory, processor speed, etc.

Getting Into the Code

Every call that is made to a system application goes through the project method
ST_comm_executeCommand:

C_TEXT($1;$0;$command_t;$inputStream_t;$outputStream_t;$errorStream_t)
C_BOOLEAN($2;$needsAuthorization_b)

$command_t:=$1

$b_needsAuthorization:=$2

$inputStream_t:=""

$outputStream_t:=""

$errorStream_t:=""

If ($needsAuthorization_b)

If (<>ST_userName_t="") | (<>ST_password_t="")

ST_comm_authorize ~ get authorization info
$inputStream_t:=<>ST_password_t

Else
$inputStream_t:=<>ST_password_t

End if
End if
If (<>ST_ONWINDOWS_b)
SET ENVIRONMENT VARIABLE("_4D_OPTION_HIDE_CONSOLE";"true")

End if

LAUNCH EXTERNAL PROCESS($command_t;$inputStream_t;$outputStream_t;$errorStream_t)
ST_error_setError ($errorStream_t)

$0:=$outputStream_t

This method is passed two parameters: the command to execute and a boolean
indicating if this command will need authorization (for OS X commands only).

If authorization is needed a check is done to see if the username and password have
been previously supplied by the user. If not, a dialog opens that requests it.

When the application is running on Windows a call is made to SET ENVIRONMENT
VARIABLE so the console won’t open while the command is executing.

Finally the LAUNCH EXTERNAL PROCESS call is made, saving any error that is received
and returning the result to the calling method.

Code Examples
A simple example of how to use ST_comm_executeCommand is in the project method
ST_app_startup (line 32):

OST_userName_t:=ST_comm_executeCommand ("whoami";False)

whoami is a Unix utility that simply returns the current user’'s name. This is run at
startup as a convenience to the user so they don’t have to enter their user name
when the authentication dialog is displayed.

To run more complex commands they need to be built so they will be properly
executed. For an example look at the project method ST_man_saveAsHTML (lines 51-
54):

$manPath_t:=ST_comm_executeCommand ("/bin/sh -c \"man -w "+$manPage_t+"\"";False)
$manPath_t:=Substring($manPath_t;1;Length($manPath_t)-1)

ST_comm_executeCommand ("/bin/sh -c \"groff -Thtml -man "+$manPath_t+" >
"+$documentPath_t+"\"";False)

ST_comm_executeCommand ("/bin/sh -c \"open ""'+$documentPath_t+""\"";False)

You will notice that in each of these calls /bin/sh was called with an option of -c
followed by the commands and options we want to run inside quotes. This causes the
bash shell to execute the quoted string. This is a simple trick to get around problems
that may arise if you try to pass too complex a command directly through LAUNCH
EXTERNAL PROCESS.

In this case the only line that was likely to cause problems is the call to groff.
However, it doesn’t hurt to explicitly execute commands in the bash shell.

The first line calls the man command with the -w option. This tells the Man command
to return the path to the file it would display if it was asked to display the man page.

The next line trims off a line feed that is added when the call is made.

The third line calls the groff utility. The option -Thtml tells groff to format in HTML.
The -man tells groff it’'s a man page that it will be formatting. Next comes the path to
the file it should use as input, in this case the path to the man page that was retrieved
previously. The > sign is an instruction to send the output to a file. The last parameter
is the path to the file to use for the output.

The last line opens the file in the default application for this file type, most likely a
web browser.

06 DIFF
|‘ | l c l] + | |_/J| #| file:///Users [jeremy/Desktop/diff.html 8 Q- Google
[0 MacSitesy MacRSS(96)v 4D Sitesy NASCAR iWon Minev Faveletsv »

NAME

diff — compare files line by line

SYNOPSIS

diff [OPTION]... FILES

DESCRIPTION

Compare files line by line.

—i —ignore—case

Ignore case differences in file contents. 2

Summary

This example has given you some ideas about how you can incorporate the built-in
commands available for you on each platform. It really only touched the surface on
the commands available, particularly on OS X.

Using LAUNCH EXTERNAL PROCESS you can find out about and change the
environment your 4D application is running in.

On Mac OS X you can take advantage of utilities such as groff and curl (see TN 05-
18), run AppleScripts using osascript, and much more.

On Windows you have access to all of the DOS commands as well as the ability to
pass flags to executables that will accept them.

To learn more about what is available on Mac OS X view the complete list of Man
pages using the provided example db or an application such as ManOpen
(http://www.clindberg.org/projects/ManOpen.html).

A complete list of DOS commands and how to use them is available on Microsoft’s web
site
(http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/ntcmds.mspx?mfr=true).

