
OCI Mapper Debug 2004-1

By Josh Fletcher, Technical Support Engineer, 4D Inc.

Technical Note 06-12

Abstract
--

This Technical Note accompanies a version of the OCI Mapper component that
features debug logging. The main focus of this Technical Note is to summarize the
debugging features that have been added to the OCI Mapper. Installation
procedures for the OCI Mapper Debug component are included.

This Technical Note is the second part of a two-part OCI Mapper update. The reason
for the two-part release is the debugging code tends to make the OCI Mapper
methods harder to read.

If you are not familiar with the OCI Mapper component, please see Technical Note
06-06, “OCI Mapper 2004-3”.

Introduction
--

The OCI Mapper is a framework that emulates the high-level commands found in
4D Oracle (a plug-in available for versions of 4D prior to 2004). It is provided in the
form of a 4D component (including source code). Its methods were implemented
with the native 4D language and 4D for OCI commands.

In this release a debug version of the OCI Mapper is provided. This version features
the logging of OCI Mapper methods as well as 4D for OCI calls to a text file in order
to facilitate advanced analysis of 4D for OCI programming problems. Additionally
the debug logging functionality may be accessed from the developer’s own
methods.

Developers who are already familiar with the OCI Mapper should find this Technical
Note (and the new component) useful for debugging problems with the OCI Mapper
as well as problems with their own 4D for OCI code.

4D for OCI developers may find the debug logging features useful as well for
debugging their own code.

Note: it is not necessary to use any of the OCI Mapper methods in order the access
the debug logging features provided in the new component. Thus the component
can be useful for debugging 4D for OCI code outside the scope of the OCI Mapper
methods.

In order to facilitate advanced debugging of the OCI Mapper framework, the OCI
Mapper Debug component adds debugging code to all of the OCI Mapper methods.
Additionally a total of 26 new methods have been added to the OCI Mapper to
facilitate the debugging code.

The debugging code logs plain text messages to a text file.

OCI Mapper Debug 2004-1 in-depth
--

In this section you will find important design highlights of the OCI Mapper Debug
component. This section is divided into two parts: general notes about the
component design; and notes about specific methods.

Important General Notes

What Gets Logged?

For OCI Mapper methods, the start and end of each method are logged. The
format of the log entry is like:

PID<process number> (stack level) indentation Method Start: method name

For example:

PID<1> (2) Method Start: OCI_Exist_Cursor
PID<1> (2) Method End: OCI_Exist_Cursor

The methods added to specifically support the debugging features are, of
course, not logged.

For 4D for OCI calls inside the OCI Mapper methods a log entry is made
before and after each 4D for OCI call. The format of the log entry is like:

PID<process number> (stack level) indentation Before: function name(p1;p2;...;pn)
PID<process number> (stack level) indentation After: return value:=function

name(p1;p2;...;pn)

Where p1...pn are the parameters to the OCI function.

For example:

PID<1> (2) Before: OCIEnvCreate(0; "OCI_HTYPE_ENV")
PID<1> (2) After: 0:=OCIEnvCreate(129735744; "OCI_HTYPE_ENV")

Note that 4D for OCI constants are logged as strings instead of the integer
constant value to aid readability.

The logging of OCI Mapper methods and 4D for OCI calls can be toggled on
and off independently.

What Parameter Types Are Supported?

Currently the logging only supports integer and string parameters. When
debugging 4D for OCI code these are often the two most important
parameter types (handles are longints, SQL text is supported, etc.).

Other types of parameters will appear as “<n/a>” in the log file. However,
the parameter logging functionality is easy to extend. See the notes for the
method OCIM_DBG_ParamToString.

Stack Level

When logging debug messages the concept of a “stack frame” is used. This is
referred to as the “stack level” in the component code. The stack level is
indicated in the log file by both an integer value and indentation using
spaces. Each time the start of a method is logged, the stack level for that
process is increased. Thus subsequent log entries are indented further. When
the end of the method is logged, the stack level is decreased.

Note that this has nothing to do with the actual stack used by 4D. This is
done only to make the log file easier to read. Here is an example:

PID<1> (0)Method Start: OD Execute SQL
PID<1> (1) Method Start: OCI_Exist_Login
PID<1> (1) Method End: OCI_Exist_Login
PID<1> (1) Method Start: OD Create cursor
PID<1> (2) Method Start: OCI_Exist_Login
PID<1> (2) Method End: OCI_Exist_Login
PID<1> (2) Before: OCIHandleAlloc(129735744; 0; …
PID<1> (2) After: 0:=OCIHandleAlloc(129735744; 129796272; …
PID<1> (1) Method End: OD Create cursor
PID<1> (0)Method End: OD Execute SQL

The stack level is only adjusted when logging 4D methods. There is no need
to adjust it for OCI calls since there is nothing can be executed between the
OCI call. For example, this would not make sense since you can not “step
into” the OCI Call:

Before oci call
log some stuff

After oci call

Debug Log Monitor Process

A method is provided in the component to be used as a process to monitor
the debug log file in order to prevent hard disk saturation. If this process is

not used, the debug log file will grow continuously. The process is started by
default.

Debug Log Files

The debug log files created by the component are plain text files.

To prevent hard disk saturation, the debug log files created by the
component are capped at 500KB by default. Log files that exceed this size
are “archived” as separate files (if the log monitor process is running). The
maximum log file size may be changed by the developer.

Only the last 6 archives are kept, by default. The maximum number of
archives to keep may be changed by the developer.

Semaphores are used to allow multiple processes to access the debug log
file.

Important Method Notes

This section covers important information about specific methods in the OCI Mapper
Debug 2004-1 component.

Method: OCIM_DBG_INIT

This method takes care of the initialization of the debug logging code and
starts the log monitor. There is no need to call this method directly for
applications that already use the OCI Mapper; it is automatically called by
OCI_TOOL_INITVAROCI. However, if you do not plan to use the OCI
Mapper methods you should place this method in your startup code.

Method: OCIM_DBG_LOGFILE_NEW

If you wish to modify the name of the debug log file, modify this method. An
interface to modify the log file name is not provided in the OCI Mapper
Debug component (other than directly modifying the interprocess variable,
which is not recommended).

Method: OCIM_DBG_ParamToString

If you wish to add support for the logging of other parameter types besides
integers and strings, modify this method. The input is a pointer to the
parameter and the output should be a string representation of that
parameter.

OCI Mapper Debug 2004-1 Command Reference
--

All of the 26 new methods added to the OCI Mapper component in this version are
prefixed with “OCIM_DBG_” to indicate that they are methods related to debugging
the OCI Mapper.

Note that the only methods documented here are the commands useful to the 4D
developer. For debugging methods not covered here, refer to the comments in the
code. For documentation on the non-debugging OCI Mapper methods refer to
Technical Note 06-06 or the comments in the code.

Finally, all of the commands in the component contain header comments that
describe the purpose of the command as well as list input/output parameters as
appropriate.

OCIM_DBG_GetLogFileName
Returns the file name of the current log file.

OCIM_DBG_GetLogFilePath
Returns the path to the current log file.

OCIM_DBG_GetLogLimit
Returns the maximum number of archived log files kept.

OCIM_DBG_GetLogSizeLimit
Returns the maximum size a log file can reach before it is archived.

OCIM_DBG_LOGFILE_DELETECURRENT
Deletes the current log file, if it exists. This method may be executed at any time; a
semaphore is used to protect log file access.

OCIM_DBG_LOGFILE_NEW
Creates a new log file name (note that the actual log file is not created until
something is logged to it). Subsequent logging will use this new file. The format of
the debug log file name is:

OCI Mapper Log MM-DD-YYYY hh_mm_ss.txt

Where “MM” is the month, “DD” is the day, “YYYY” is the year of the current date
and “hh” is the hour, “mm” is the minute, and “ss” is the seconds for the current
time.

This command can be called at any time; semaphores are used to protect access to
the log file.

OCIM_DBG_LogMapperOff
Turn off the logging of OCI Mapper method calls.

OCIM_DBG_LogMapperOn
Turn on the logging of OCI Mapper method calls.

OCIM_DBG_LogOCIOff
Turn off the logging of 4D for OCI function calls in the OCI Mapper methods.

OCIM_DBG_LogOCIOn
Turn on the logging of 4D for OCI function calls in the OCI Mapper methods.

OCIM_DBG_Log_MessageNoPad
Logs a message to the log file with no stack level. The message format is:

PID<Process Number> message/r/n

OCIM_DBG_Log_MethEnd
Logs a message to the log file to indicate that the end of a 4D method has been
reached. Decreases the stack level for the current process.

OCIM_DBG_Log_MethStart
Logs a message to the log file to indicate that the start of a 4D method has been
reached. Increases the stack level for the current process.

OCIM_DBG_Log_OCIMethAfter
Logs a message to the log file to indicate that a 4D for OCI function call has
completed. The format of the message is:

After: OCIReturnVal:=OCIMethodName(p1;p2;...;pn)

Where p1...pn were the parameters to the OCI function.

OCIM_DBG_Log_OCIMethBefore
Logs a message to the log file to indicate that a 4D for OCI function is about to be
called. The format of the message is:

Before: OCIMethodName(p1;p2;...;pn)

Where p1...pn are the parameters to the OCI function.

OCIM_DBG_MonitorLogStart
Creates a process that will monitor the debug log file and archive it if needed.

OCIM_DBG_MonitorLogStop
Sets an interprocess variable so that the debug log monitoring process can be
stopped.

OCIM_DBG_SetLogFilePath
Sets the path where the log file will be saved. Default path is the OS temporary
folder. This command can be called at any time; semaphores are used to protect
access to the log file.

OCIM_DBG_SetLogLimit
Sets the maximum number of archived log files to keep. Default is 6.

OCIM_DBG_SetLogSizeLimit
Sets the maximum size that the log file can reach before it is archived. Default is
500KB.

The following OCI Mapper Debug debugging methods are not covered here, but
more information can be found in the source code for the methods:

OCIM_DBG_FormatLogFilePath
OCIM_DBG_INIT
OCIM_DBG_LOGFILE_ARCHIVE
OCIM_DBG_Log_Message
OCIM_DBG_MonitorLog
OCIM_DBG_ParamToString

Installation Procedures
--

Note that 4D 2004 and 4D for OCI 2004 are required for the OCI Mapper Debug
2004-1.

Installing the OCI Mapper Debug component into a new database

1. Open the database with 4D Insider.
2. Open the Components menu and select Install/Update...:

3. Browse for the “OCI Mapper Debug 2004-1.4CP” file and click the Open
button.

4. 4D Insider installs the OCI Mapper Debug component. Be sure to copy the
“OCI_Mapper” table:

5. Quit 4D Insider.
6. Open the database with 4D.
7. Insert the method OCI_TOOL_INITVAROCI or OCIM_DBG_INIT in the

On Startup database method.
8. Quit 4D.
9. Finally be sure that the 4D for OCI plug-in is installed in the database.

Installing the component into a database that already uses the OCI
Mapper

Note: you cannot install the OCI Mapper Debug component without first uninstalling
the “regular” OCI Mapper component from a database that already uses the OCI
Mapper.

1. Open the database with 4D Insider.
2. First uninstall the “regular” version of the OCI Mapper. Open the Main pop-

up menu and select Groups & Components:

3. Select the OCI Mapper component:

4. Open the Components menu and select Uninstall…:

5. Click the OK button to uninstall the “regular” OCI Mapper.
6. Open the Components menu and select Install/Update...:

7. Browse for the “OCI Mapper Debug 2004-1.4CP” file and click the Open
button.

8. 4D Insider installs the OCI Mapper Debug component. Be sure to copy the
“OCI_Mapper” table:

9. Quit 4D Insider.

Using the OCI Mapper Debug Component
--

If this is a new database in which the OCI Mapper has never been installed, be sure
to add OCI_TOOL_INITVAROCI to your startup code. You must execute this
method before you call any other OCI Mapper methods. If you only plan to use the
debug logging features of the component you may call OCIM_DBG_INIT in your
startup code instead of OCI_TOOL_INITVAROCI.

If this is a database that already used the OCI Mapper you should already have
OCI_TOOL_INITVAROCI in your startup code. The debug log monitor process will
already be started and the logging is turned on by default when you start your
database.

To stop the debug log file monitor process use OCIM_DBG_MonitorLogStop.
Beware that the log file will grow continuously if you do this. To start it
again use OCIM_DBG_MonitorLogStart.

If you wish to disable the logging of OCI Mapper method calls, execute
OCIM_DBG_LogMapperOff. Use OCIM_DBG_LogMapperOn to turn the logging
back on.

If you wish to disable the logging of 4D for OCI calls in the OCI Mapper, execute
OCIM_DBG_LogOCIOff. Use OCIM_DBG_LogOCIOn to turn the logging back
on.

There are several options that can be set in regards to the debug log file:

• The location of the log file.
• The maximum number of archived log files to keep.
• The maximum size the log file can reach before archiving.

The location of the log file can be set with OCIM_DBG_SetLogFilePath. The
default setting is the OS temporary folder.

The maximum number of archives can be set with OCIM_DBG_SetLogLimit. Note
that this is only enforced if the debug log monitor process is running. The default is
6.

The maximum size of the log file can be set with OCIM_DBG_SetLogSizeLimit.
Note that this is only enforced if the debug log monitor process is running. The
default is 500KB.

Logging Your Own 4D Methods

If you would like to log the start and end of your own 4D methods do the following:

At the beginning of your method add a line like:

OCIM_DBG_Log_MethStart (Current method name)

At the end of your method add a line like:

OCIM_DBG_Log_MethEnd (Current method name)

For example, given the 4D project method “MyMethod” the log entry might look
like:

PID<1> (0)Method Start: MyMethod
PID<1> (0)Method End: MyMethod

Logging Your Own 4D for OCI Calls

If you would like to log the start and end of your own 4D for OCI calls do the
following:

Given a 4D project method that is about to call the 4D for OCI function
OCIStmtExecute as:

$status:=OCIStmtExecute ($Svchp;$Stmthp;$Errhp;1;0;0;0;OCI_DEFAULT)

Before the 4D for OCI function call add a code block like:

C_TEXT($ociConstant)
C_LONGINT($zero;$one)
$ociConstant:="OCI_DEFAULT"
$zero:=0
$one:=1
OCIM_DBG_Log_OCIMethBefore ("OCIStmtExecute";->$Svchp;->$Stmthp;->$Errhp;->$one;-
>$zero;

->$zero;->$zero;->$ociConstant)

Note how the 4D for OCI constant OCI_DEFAULT is represented as a string. This is
not necessary, you could just use the constant’s value, but it makes the log file

easier to read. Also notice that literals must be represented with a variable since
the parameters to OCIM_DBG_Log_OCIMethBefore must be pointers.

After the 4D for OCI function call add a code block like:

OCIM_DBG_Log_OCIMethAfter ($status;"OCIStmtExecute";->$Svchp;->$Stmthp;->$Errhp;->$one;-
>$zero;

->$zero;->$zero;->$ociConstant)

Notice that the first parameter to OCIM_DBG_Log_OCIMethAfter is the return
value of the 4D for OCI function. All 4D for OCI commands have a return value with
the exception of OCIOnErrCall.

The log entry for this code might look like:

PID<1> (2) Before: OCIStmtExecute(129758392; 129795236; 129796272; 1; 0; 0; 0;
"OCI_DEFAULT")
PID<1> (2) After: 0:=OCIStmtExecute(129758392; 129795236; 129796272; 1; 0; 0; 0;
"OCI_DEFAULT")

A Final Word

There may be features of the OCI Mapper Debug component that you do not like or
that do not highlight a problem that you are trying to debug. If this is the case,
remember that you have the source code! Please feel free to alter the design as it
suits your database. A great attempt has been made to document the source code
of the OCIM_DBG methods to make it easy should the developer choose to change
the design. Hopefully you will find the debug log file management code useful in
any database.

Useful Resources
--

Useful 4D Resources

4D for OCI Documentation:
http://www.4d.com/products/downloads_4d.html
(Included with the 4D 2004 All-in-One Installer package)

Useful Oracle Resources

Oracle Call Interface Programmer's Guide, 10g Release 2 (10.2):
http://download-
west.oracle.com/docs/cd/B19306_01/appdev.102/b14250/toc.htm

Oracle Call Interface Programmer's Guide, Release 8.1.6
http://download-west.oracle.com/docs/cd/A87862_01/NT817CLI/index.htm

Conclusion
--

The OCI Mapper provides a good example of how to build a framework for 4D for
OCI. However it also provides a level of abstraction from “pure” 4D for OCI
programming. This abstraction can make debugging the 4D for OCI code a more
difficult task. Thus the OCI Mapper Debug component can be a great help in
debugging the OCI Mapper code. Furthermore, the OCI Mapper Debug component
provides a good example of how to build a debugging “harness” for 4D for OCI
programming.

