
Backup Settings for Distributed Applications

By Jean-Yves Fock-Hoon, QA Manager, 4D Inc.

Technical Note 06-13

Overview
--

When creating a distributed application in 4D 2004, it is often desirable to be able
to specify custom Backup preferences that will accompany the application.

The purpose of this Technical Note is to show how to create a custom Backup.XML
file (also called the Backup project file) to be used by the 4D Backup system with
distributed applications.

Building an Application
--

The Problem

Usually, when developing a 4D database, the developer is focused on getting the
main features working. Things like building the redistributable application (based on
4D Runtime or 4D Server) or testing of some basic features such as Backup or the
merged application are usually the last steps. This Technical Note focuses on the
often overlooked step of setting the Backup preferences for a distributed
application.

Here is a typical scenario:

The database development is over. The developer tests the application and tests
the Backup system. Everything seems fine. Note that by testing the Backup system
a Backup.XML project file is created.

The developer is now ready to test the database as a merged Server application.
However, once the application has been built, not all files will have been copied
inside the Server folder. Some of these files are under the Preferences folder.
Therefore, the developer needs to copy some files from the Preferences folder to
the new server’s folder. However the developer should not just copy the entire
Preferences folder since it often contains unnecessary files like the xml file used to
build the application.

At this point the application seems to be working on the development machine so
the next step is to copy the application onto another machine and launch it. Here is
where the first problem is often encountered…

A folder cannot be found. 4D asks the user to select a new folder path. What is
going on here? How can this warning message be avoided?

The 4D Backup Project File

The problem comes from the Backup.XML file. In this file there is a path where all
Backup files will be saved. Since the database has been moved to a new machine,
that path is no longer valid. Furthermore 4D asks that a new Backup path be
chosen before the database can launch because the Backup settings of the
database, or even the 4D code in the database, may want to run a Backup
immediately. Thus 4D needs to have a valid Backup path.

So how can the developer prevent this dialog? One solution is to not to copy the
Backup.XML file when moving the database. If a Backup is requested and there is
no Backup.XML file, 4D will create a new one with all the default values. At this
point the Backup may be launched.

Notice that when a brand new database performs a Backup for the first time, 4D
performs the Backup and creates the default Backup.XML file in the
Preferences\Backup folder, next to the structure file. This is also true for merged
applications. Given a merged 4D Server application, with no Backup project file, 4D
will still be able to perform a Backup and will generate a default Backup project file
for that application. In many cases allowing 4D to proceed with this default
behavior is completely adequate.

However, the default values may not match the current needs of the database
because the developer might need to define some of the Backup settings, such as
the number of archives to keep, some extra files to be archived, some advanced
settings to speed up the Backup process or, especially, the developer may have a
specific Backup schedule in mind. In this situation the developer needs to provide
their own predefined Backup project file. Here is the dilemma: the developer can
use their own settings, but they will still see the invalid Backup path dialog since
the destination path specified in the Backup.XML may no longer be valid after
moving the database.

A Different Approach
--

Building a Backup.XML File

Given that the developer needs to specify their own values in the Backup.XML file, a
better solution might be to create a custom Backup.XML file when starting the
application. 4D already has built-in commands to parse and write XML documents.
The developer just needs to know the XML tags that will be used. The structure of
these tags and the process of generating the document are quite easy.

If the developer does not want the user to be involved in this process, they can
create this document from the On Startup or On Server Startup database
method of the application. When starting the database, the developer can check to
see if the Backup project file exists or not. If the file does not exist, the developer
may create a new XML file. The current user will not notice this operation. The
Backup will be ready to be performed.

If the developer wants the user to be informed about the creation of the
Backup.XML file and give them the ability to modify some settings, then a dialog
could be displayed so that the user can change the settings. Based on the
developer’s hard-coded values and the user’s last modifications, the developer can
regenerate the Backup.XML file.

Note that the developer must be sure that the XML generated is well formed, e.g.
that all parameters are valid or that there are no extra space characters at the end
of the values. Otherwise 4D Backup will generate its own default values for each
malformed object.

There is already a demonstration database that shows how to parse and modify the
Backup XML document. The inconvenient part of this technique is that the XML code
will have to be stored inside 4D, with a list of XML commands that will insert some
namespaces, tags and values in the XML tree. If something changes one day, the
developer may have to modify that code based on the way the XML is now built.

Another Concept

Another idea is to have the Backup.XML file outside of the application, in an XML file
that will be used as a template. If the XML format changes, all the developer has to
do is change this template XML file; there is no need to modify the 4D code, unless
a new variable must be declared and initialized.

How does this work? The idea is to have a Backup.XML template file in which all of
the values are defined by 4D HTML tags. These variables would be pre-defined in
the 4D code. Note that the 4D code will not use any XML commands; it will just
load the template and execute the PROCESS HTML TAGS command on it. Once
the template has been processed, it can be saved as Backup.XML file in the
Preferences folder for the database.

A template XML file is provided with the demonstration database. Its name is
Backup.XML2 and resides in the Preferences\Backup folder.

Here is a summary of the steps involved in this technique:

• After building the merged 4D Server application, the developer is supposed
to copy the Preferences\Backup folder to the Server folder. Instead of
copying the Backup.XML file, just copy the template, e.g. Backup.XML2.

• When launching the database, the On Server Startup method will check if a
Backup.XML file exists.

• In order to get the location of the Preferences folder, the current technique
would be to grab the Extras folder path (using the Get 4D folder command)
and compute the Preferences folder path. Another technique would be to use
the Structure path instead. But the Extras folder is simpler and faster.

• Once the path has been computed, a call to Test path name on that path
can be used to tell if the Backup.XML file exists or not.

• If a Backup.XML file exists, that would mean that the Backup settings have
already been set. The database is all set and can continue.

• If the file does not exist this should be a brand new installation. At this point,
the developer has a few different choices on how to create the Backup.XML
file:
o The developer can make this completely invisible to the user. They can

generate the Backup.XML file with their own pre-defined variables.
o If the developer wants to give the user the ability to choose the folder

right now or later, a request dialog can be used.
o Finally, the developer might want to offer the user some direct control

over the Backup settings. There is an “Advanced” Backup settings
dialog provided in the example database. The developer could use the
default provided dialog, or use their own dialog, with more or less
options.

In the demonstration database a simple dialog is displayed where the user can
choose the Backup destination folder. This dialog also contains a button that will
display an Advanced Settings dialog that will covert almost all options that the user
can see in the default Backup preferences dialog. Once done the PROCESS HTML
TAGS command is used to process the Backup.XML2 template and save the result
as the Backup.XML file in the Preferences folder. Voila!

The Backup.XML2 File

This file is just a default 4D Backup project with some modifications. Almost all
values have been replaced by 4D tags such as 4DVAR with a lot of 4DIF tags for
when the values can be different.

Here is the list of all variables used in that template file (and also defined in the
Advanced Settings dialog) with the corresponding XML key tag.

Variable Name Tag Name
BKP_rb_AlwaysWaitBKP <WaitForEndOfTransaction>
BKP_NbMinWait <Timeout>
BKP_rb_RetryNextTime <TryBackupAtTheNextScheduledDate>
BKP_at_timeretry <TryToBackupAfter>
BKP_cbCancelRetryBKP <AbortIfBackupFail>
BKP_NbTries <RetryCountBeforeAbort>
BKP_cbRestoreLastBKP <AutomaticRestore>
BKP_cbIntegrateLastLog <AutomaticLogIntegration>
BKP_cbStartDbAfterRestore <AutomaticRestart>
BKP_cbIfModified <BackupIfDataChange>
BKP_cbKeepLastBKP <Enable>
BKP_BackupSet <Value>
BKP_at_CompressionRate <CompressionRate>
BKP_at_RedundancyRate <Redundancy>
BKP_at_InterlacingRate <Interlacing>
BKP_at_SegmentSize <DefaultSize>
BKP_at_DelOldBKP <EraseOldBackupBefore>
Bkp_cbStructureFile <IncludeStructureFile>
Bkp_cbDataFile <IncludeDataFile>
Bkp_cbAltFile <IncludeAltStructFile>
BKP_BackupFileDest <DestinationFolder>
BKP_SA_Attatchments <ItemsCount>
BKP_SA_Attatchments <Item>
BKP_rbSched_NoBKP <Frequency>
BKP_rbSched_Hours
BKP_rbSched_Days
BKP_rbSched_Weeks
BKP_rbSched_Months
BKP_atSchedStartHours <Hourly>
BKP_atSchedStartDay <Daily>
BKP_SchedEveryWeek <Weekly>
BKP_cbSchedEveryMonday <Monday>
BKP_atSchedStartTuesday <Tuesday>
BKP_CBSCHEDEVERYWEDNESDAY <Wednesday>
BKP_CBSCHEDEVERYTHURSDAY <Thursday>
BKP_CBSCHEDEVERYFRIDAY <Friday>
BKP_CBSCHEDEVERYSATURDAY <Saturday>
BKP_CBSCHEDEVERYSUNDAY <Sunday>
BKP_SchedEveryMonth <Monthly>
BKP_atSchedStartMonth <Hour>
BKP_SchedEveryMonthDay <Day>

Summary
--

This Technical Note describes how to prevent the invalid destination dialog from 4D
Backup when starting a custom application. It also shows how to implement the
definition of your own settings about Backup in your database.

