
4D Advanced Debugging Techniques – Part 1

By Josh Fletcher, Technical Support Engineer, 4D Inc.

Technical Note 06-31

Abstract
--

The purpose of this 2-part Technical Note is twofold:

• To provide a reference for some of the advanced debugging features that are
available in 4th Dimension (4D) 2004. This will be covered in part 1.

• To provide an alternative technique for debugging, based on text file logging,
for when the 4D features are not available or not ideal. This will be covered
in part 2.

In part 1 the basic concepts of debugging are presented as well as how they are
implemented in 4D. Finally some advanced 4D debugging techniques are
highlighted.

Part 2 of this Technical Note will present a debugging technique based on text file
logging and will include a 4D component that can be used to facilitate text file
logging in any database. Instructions for installing and using this component will be
included.

Introduction
--

This section covers the basic concepts of debugging and how 4D fits into the
debugging picture.

Debugging Concepts

The Wikipedia encyclopedia (http://www.wikipedia.org/) defines debugging as
follows:

“Debugging is a methodical process of finding and reducing the
number of bugs, or defects, in a computer program or a piece of
electronic hardware thus making it behave as expected.”
http://en.wikipedia.org/wiki/Debugging

Perhaps the most important word in the above definition is “methodical”. It is very
important to approach debugging from a methodical perspective. Not using an
organized approach to debugging will make it far more difficult to isolate problems
and might even introduce new ones.

The basic steps of debugging can be broken down as follows:

1. Acknowledge that a bug exists.
2. Determine the pattern that reproduces the bug.
3. Determine the source of the bug.
4. Determine the cause of the bug.
5. Develop a fix for the bug.
6. Apply the fix.
7. Test the fix.

Step 1 in this list is often overlooked but it is important to mentally acknowledge
that a bug exists. Of course no one likes to admit that they write buggy code but if
debugging is approached with the mindset that the there are no bugs then finding
the cause of the bad behavior will be that much more difficult.

Other the other hand it is important to clearly identify what the undesirable
behavior is and how to reproduce it, which brings us to step 2. Simply saying “this
database crashes” is not sufficient. If a program crashes this is, of course,
undesirable but in terms of isolating the problem one must be able to determine
when and how the program crashes before even attempting to address step 3 (the
source) or step 4 (why the program crashes). For example users of the software
might say the program crashes “randomly”. Saying that a program can crash
randomly is a logically false statement. Short of random fluctuations in the
electricity flowing through the computer (and some might say even this is not
random), there is always a perfectly logical explanation for why a program might
crash. After all computers are devices built on logic. What the term “random
crashing” really points to is that the problem at hand may be hard to isolate.
Establishing the pattern that reproduces the bug can be a daunting task given that
there are so many variables and layers that go into any piece of software. Often the
most difficult and time-consuming part of debugging is determining the pattern that
reproduces the bug, not determining where or why the bug occurs. Thus
establishing the pattern is critical to the debugging process.

Once a reproducible pattern has been established for the bug step 3 can be tackled;
determine the source of the bug. Depending upon the complexity of the software
and, especially in 4D’s case, whether or not the database is compiled this task can
be anything from trivial to very time consuming. Still the basic procedure is the
same: find the specific event that causes the buggy behavior. This could be a single
method call or a single button click or a single bad record. The pattern helps limit
the search to specific areas of the software but the bug (or bugs) can usually be
broken into atomic parts. This step is critical.

Once the source of the bug has been determined it is time to analyze the cause
(step 4). Was it bad data in the record? Was it an unexpected input or return value?
This is where step 3 becomes critical because modern software is often made up of
many modules that the developer may or may not have access to. If the bug can be
isolated to a single line of code and that single line of code happens to be a function

call to a third-party library it may be impossible to completely determine the cause
of the bug (without the help of the third party of course).

When developing bug fixes (step 5) there is one important point that should be
acknowledged: if a fix does not actually stop the problem, be sure to back out the
changes before trying another fix. If any non-useful alterations are left in they
might introduce further bugs. Of course there are situations where the fix might
need to be applied in layers so it might not always be appropriate to back out all
changes. This point is not meant to be a “hard” rule but more a mental exercise
that more often than not speeds the debugging process.

Step 6 (apply the fix) is straightforward, with some minor points. If the bug is in
the 4D code then the source code must be available (i.e. a copy of the interpreted
database must be available). If the bug was caused by bad data the behavior can at
least be avoided by fixing the data (although the code should still be changed to
prevent the bug from happening again). In other words the fix might not always be
in the 4D code, or in any other code, but simply a matter of maintenance.

Testing the bug fix (step 7) often simply involves repeating the pattern established
in step 2 to see if the undesirable behavior stops.

Note that the numbering of these steps is not meant to imply that this process is
serial. The process of debugging often involves much iteration through these steps
but, in general, it is best to try to execute them in order, i.e. do not jump from step
2 (pattern) to step 5 (fix) because you think you might know the cause of the bug.
If you are wrong you might have made more work for yourself by needing to back
the fix out and re-evaluating the pattern to make sure it is valid. Sticking with the
methodical approach will more often than not make the process go smoother.

Where does 4D fit in?

The techniques presented in this Technical Note will be on focused on steps 2, 3,
and 4 from the list above. That is:

2. Determine the pattern that reproduces the bug
3. Determine the source of the bug
4. Determine the cause of the bug

4D provides several different features that support the process of debugging:

• The debug/trace window
• The Runtime Explorer
• The debug log file
• Error messages

The debug/trace window is an extremely powerful tool for debugging interpreted
databases. It provides a host of abilities that make finding the source and cause of

a bug much easier. The debug/trace window is not, however, available in compiled
databases.

The Runtime Explorer is similar to the debug/trace window in usefulness with the
added bonus that some of the information in contains is available in both
interpreted and compiled databases.

The debug log file generated by 4D is essentially a log of the call chain for a 4D
database. The primary advantages that 4D’s debug log file has over a log file
created by the developer are: lower level 4D calls are logged in addition to the
logging of the developers methods; and the file access is controlled by 4D, i.e. the
developer does not need to manage access to the file.

There are several different kinds of error messages that 4D can present
depending on a given situation. These messages are often overlooked in terms of
debugging and it is important for the 4D developer to acknowledge that, in many
cases, the error message can point to the exact line of code and reason that might
be causing the problem. However, as with the debug window and the Runtime
Explorer, some types of error messages are not available in compiled databases.

What if 4D cannot help?

It is important to note that, with the exception of the debug log file, none of the
above features are particularly helpful in determining the pattern that reproduces a
bug. These features are primarily focused on isolating the source of the bug once it
has already been reproduced.

Recall that it was suggested to follow the list of debugging steps in order, i.e. the
process of determining the pattern to reproduce the bug should ideally be
completed before attempting to isolate the bug.

In addition, most of these features are also not available in compiled databases so,
when investigating a bug that only occurs in a compiled database, the debugging
options are more limited.

One alternative to alleviate both of these problems is to create a log file with
customized information. This file can then be used to recognize patterns in the
database, as well as for isolating the source of a bug. Part 2 of this Technical Note
will explore this solution in greater depth (as well as provide a 4D component that
implements it).

Advanced Debugging Part 1 – 4D Techniques
--

This section covers some helpful and often overlooked features of 4D that are
available for debugging. The techniques are grouped based on the list given above
and repeated here:

• The debug/trace window
• The Runtime Explorer
• The debug log file
• Error messages

The Debug/Trace Window

The debug/trace window is already well documented in the existing 4D
documentation so it is not covered in-depth here. Refer to the “Design Reference”
and “Language Reference” for your version of 4D for general information about this
feature.

This section aims to cover two of the less used/overlooked features of the
debugger: the Custom Watch Pane and the Program Counter.

The Custom Watch Pane is an extremely powerful tool when it comes to debugging.
Here is a screenshot of the debugger with the Custom Watch Pane highlighted:

Of course the value of variables and expressions can be viewed in this pane but it is
important to note that any 4D expression can be entered here. 4D commands,
project methods, plug-in methods, etc. can be executed.

Here is a simple example:

Given a project method that adds the two long integer parameters together and
returns the result, e.g.:

` Add two numbers…
C_LONGINT($1;$2;$0)

$0:=$1+$2

When debugging this method, after executing the line “$0:=$1+$2” it is
determined that the value in the second parameter is invalid. A new value must be
entered for testing. The new value will be “5”. However, rather than aborting the
process and executing the method again, just change the value of $2 in the Custom
Watch Pane. To do this the variable $2 must first be added to the Expression list.
There are a few ways to accomplish this:

• Right-click in the Expression list and choose “New Expression…” from the
context menu. This opens the Formula Editor. Use the Formula Editor to
insert $2.

• Double-click in the Expression list to create a new, empty expression and
type in “$2” (without the quotes). Press RETURN to create and evaluate the
expression.

• Highlight “$2” with the mouse anywhere in the method. Hold the CTRL
(Windows) or Command (MacOS) key and single-click on the highlighted
text. Note that this technique works for any highlighted text. Even if the
highlighted text is not a valid expression it will still be inserted into the
Expression list.

Regardless of the technique used, the expression “$2” will be inserted in the
Expression list, as shown here:

To change the value of $2 to “5”, single-click on the value under the Value list to
edit it (note that ENTER/RETURN must be pressed to make the change stick). At
this point the value of $2 has been changed. All subsequent lines of code will use
this new value.

Now the addition must be executed again but that line of code has already been
executed. Once again, rather than aborting the process and starting over, another
of the debugger’s excellent features can be used: the Program Counter. This is the

small yellow arrow that appears in the Source Pane, as can be seen in this
screenshot:

This arrow indicates which line of code in the debugger will be executed next (e.g. if
“Step Over” is chosen). It is important to note that the Program Counter can be
moved to any other line in the method, thus allowing the code to execute in any
order. This is a very powerful tool!

In this example the Program Counter needs to be moved back one line in order to
execute the addition again:

Then execute a “Step Over” to execute the line of code.

Here is another example to demonstrate the power of the Custom Watch Pane:

Using the same method and same problem as above, rather than adding the
parameter $2 to the Expression list, altering its value, and using the Program
Counter to re-execute the addition, do the following:

• Double-click the Expression list to insert a new expression.
• Enter “$1+5” (press ENTER/RETURN to force the debugger to evaluate the

expression).

In this example the result of performing the previous steps can be seen without
actually altering the value of the $2 parameter. Again, any 4D expression can be
added to the Custom Watch Pane!

There is one important caveat to using expressions in the Custom Watch Pane:
anytime the debugger window gains focus or the Program Counter advances, the
expressions in the Custom Watch Pane are re-evaluated. This can be dangerous.

For example entering “ALERT(“Hello World!”)” in the Custom Watch Pane can create
an endless loop of Alert dialogs since each time the Alert window is closed the
debugger will gain focus and the Alert will open again (Incidentally, to get out of
this loop, use the spacebar to repeatedly close the alerts while repeatedly clicking
on where the expression appears behind the alert. If the timing is right, the
expression should be highlighted. Once the expression is highlighted, repeatedly
press the delete or backspace key while pressing spacebar to close the alerts. If the
timing is right the offending expression will be deleted from the Custom Watch
Pane).

The Custom Watch Pane and Program Counter are two indispensable features of the
4D debugger. With these tools code can be executed in any order the developer
chooses and any 4D expression can be executed at any time during the debugging
process. This often eliminates the need to stop and re-start processes when
debugging, which can lead to tremendous time savings depending upon the design
of the database and how complex a pattern is needed to reproduce a given bug.

There are however a few significant drawbacks to the Debug/Trace window: it is not
available in compiled databases; if there is a problem in the database due to timing
(e.g. when things are executing) the debugger is not well suited to tracking them
down since, but its nature (by artificially stopping execution), the timing of
execution is being altered; and the debugger is not efficient for spotting larger
patterns in the database.

The Runtime Explorer

As with the debugger, the Runtime Explorer is well documented in the existing 4D
documentation. Rather than cover all of the Runtime Explorer features, this section
will focus on one of the most powerful debugging features of 4D that is often
overlooked because it is not a part of the Debug/Trace window: the Caught
Commands List.

Here is a screenshot of the Runtime Explorer with the Caught Commands List page
open:

What is so powerful about “caught” commands is that the developer does not need
to know the exact location of the code that needs to be debugged. When a
command is entered in this list, 4D will automatically open a Debug/Trace window
anytime that command is executed. This can be useful for establishing a pattern to
reproduce the bug; if the developer thinks the bug is related to a specific command
but is not sure where the bug is occurring they can set a “catch” for that command
and observe all places where the command is used.

However, it is important to reiterate that any execution of the commands in the
Caught Commands List will open in the debugger. This can get quite overwhelming
if the commands are used throughout the database. It is important to keep this in
mind when using the Caught Commands List.

As with the debugger, the Caught Commands List is not available in compiled
databases. Similarly, while this feature is better than the debugger for investigating
patterns, it can still be cumbersome in large, complex databases where the
commands being caught are executed in multiple places.

A final note: the “Watch Pane” of the Runtime Explorer supports custom
expressions just as the debug/trace window. The same techniques mentioned
above can be used to add custom expressions to this pane with the exception of
being able to highlight text in the Source Pane since there is no Source Pane in the
Runtime Explorer.

The Debug Log File

With the release of 4D 2004.3 a new feature was added called “Debug Log
Recording”. This feature creates a log file, managed by 4D, which can be useful for
debugging. This log is essentially a log of the call chain for the database.

There is already a Technical Note that covers the use of the Debug Log File feature
in-depth. Refer to Technical Note 06-01, “The 4DDebugLog.txt File”.

The primary shortcoming of this log file is the information it contains. In some
cases, e.g. when the database is crashing, this log file can be useful for isolating
the specific point where the database crashes (usually the last entry in the log file is
where the crash occurred). At the same time the contents are not customizable and
may not be what the developer really needs (hence the purpose of part 2 of this
technical note about debugging with a custom log file).

Error Messages

4D can present a variety of error messages like Syntax Errors, Database Engine
Errors, Network Errors, etc. This topic may seem self explanatory. Error messages
are there to tell the developer when an error occurs. However it is surprising how
often it is overlooked that the error message is there to tell why the problem
occurred as well.

In terms of debugging, error messages can be extremely important and it is vital to
understand what the error message means as it may lead to the solution of the
problem much more quickly.

At the same time error messages can be misleading and point the developer in the
wrong direction. It is, of course, important to be conscious of this. Nonetheless the
error messages that 4D presents should never be ignored and care should be taken
to make sure whether or not the error message seems correct and might already
have isolated the bug for the developer.

Conclusion
--

This Technical Note explored the process of debugging as well as some of the
advanced techniques available to the developer using built-in 4D features.

Part 2 of this Technical Note will present a debugging technique that can be useful
for when the 4D features are not available or not ideal. This technique involves the
use of text file logging and analyzing the resultant text file. A 4D component will be
included that demonstrates this.

