ImageMagick Plug-in

By Thomas Maul, General Manager, 4D
TN 06-32

Introduction

This Plug-in enhances the support of picture-handling commands using the Open
Source Framework ImageMagick (please refer to www.ImageMagick.org).

Even if ImageMagick can be called directly using LAUNCH EXTERNAL PROCESS, this
plug-in removes the need to install the application on each client computer, using 4D’s
plug-in mechanism it is automatically deployed to all computers.

ImageMagick is a very feature-rich graphical application that allows you to resize,
crop, rotate, enhance and manipulate images. It supports a wide area of image
formats. QuickTime is not needed to use this plug-in.

License

ImageMagick is free software packaged with full source code and can be freely used,
copied, modified and distributed. See http://www.imagemagick.org/script/license.php
for the license information. It allows the usage for commercial purpose and
distribution.

In short:

To be allowed to include ImageMagick into your application, you must include the
license agreement file on your Distribution CD and provide clear credits and attribution
to ImageMagick Studio LLC in your About dialog (copyright notice).

Main Features

Static link

The plug-in includes ImageMagick as a static link, which makes it possible to run on
computers without a full ImageMagick installation. All the code is contained in the
plug-in, which makes it larger. A major drawback is that not all picture formats are
supported, because their libraries are not included: either because of legal problems
(no free license) or because of their size. The plug-in uses ImageMagick version 6.2.7
(current version of June 2006).

Cross platform
The plug-in runs on both Mac OS and Windows with the same feature set.

External document and blob support

The plug-in allows you to use either external documents or images stored in a 4D blob
object, which allows you to easily store pictures in the 4D database and display them
using 4D’s commands or the Pict Container plug-in.

More documentation

The plug-in is a wrapper of Magick++ and often directly passes the parameters. More
info about the parameters may be found at:
http://www.imagemagick.org/Magick++/Documentation.html

Plug-in workflow

All commands are written around image objects. Several image objects can exist
simultaneously; this is limited only by available memory.

An image objects can be read, written, or copied, the contained image properties can
be read or written and the image can be manipulated.

Image Objects

IM New Object
IM New Object-> error code

Parameter Type Description
Function result Longint <- Error code (0 = No error)

Description
This command creates a new, empty, image object in memory.
Errors are not to be expected in this phase, see error addendum for details.

IM Clear Object

IM Clear Object(object) -> error code

Parameter Type Description
Object Longint -> ImageMagick object
Function result Longint <- Error code (0 = No error)

Description
The command clears an object from memory. If it is the last object referring to an
image the memory it used is released.

Errors are only to be expected for invalid Object values, see error addendum for
details.

IM Copy Object

IM Copy Object(dest_object; source_object) -> error code

Parameter Type Description

Dest_object Longint -> ImageMagick object
Source_object Longint -> ImageMagick object
Function result Longint <- Error code (0 = No error)

Description

This command creates a copy of the reference to the image stored in source_object
and sets it into dest_object. Both objects must have been created with IM New Object
beforehand, Source_object must be a valid object.

This command does not always copy the image itself, usually only a reference and
modification profile. Only for major modifications is the whole image copied, in order
to reduce memory usage.

Expect errors if one of the objects is not created or if the source_object is empty,
refer to the error addendum for more details.

Image Usage

IM Open File

IM Open File(object; path) -> error code

Parameter Type Description

Object Longint -> ImageMagick object

path Text -> full Path to document
Function result Longint <- Error code (0 = No error)

Description
This command opens the specified image and places it the existing object. Only the
file content is used to define the image type.

Settings from the existing object are used, like Geometry (which allows you to specify
for some image types like JPEG or PictureCD the requested image size). To overwrite
any existing information use IM Clear Object/IM New Object before.

For multiple page formats (GIF/TIF) it is possible to specify the requested page by
adding the page number after the file name. Example:
C:\folder\document.gif -> C:\folder\document.gif[0] for first page.

Refer to the error addendum for possible error codes.

IM Open Blob

IM Open Blob(object; blob) -> error code

Parameter Type Description

Object Longint -> ImageMagick object

blob Blob -> 4D blob field/variable
Function result Longint <- Error code (0 = No error)

Description

This command tries to open the specified image stored in a 4D blob. Only the blob
content is used to define the image type.

Settings from the existing object are used, like Geometry (which allows you to specify
the requested image size for some image types like JPEG or PictureCD). To overwrite
any existing information use IM Clear Object/IM New Object beforehand.

Refer to the error addendum for possible error codes.

IM Save File

IM Save File(object; path) -> error code

Parameter Type Description

Object Longint -> ImageMagick object

path Text -> full Path to document
Function result Longint <- Error code (0 = No error)

Description

This command tries to save the specified image. The format is specified with the file
extension. For documents without file extension, the format can also be set using:
$err:=IM Modify Image(object;IM_Magick;"”PDF”;0;0;0;0;0;0)

The compression quality can be set using:

$err:=IM Set Image Properties (IM;IM_Pref_Quality;"””;50;0;0;0)

* for 50% compression

Refer to the error addendum for possible error codes.

IM Save Blob

IM Save Blob(object; blob) -> error code

Parameter Type Description

Object Longint -> ImageMagick object

blob Blob <- 4D blob field/variable
Function result Longint <- Error code (0 = No error)

Description

This command tries to save the specified picture. The picture is saved in its original
format. The format can be changed using:

$err:=IM Modify Image(object;IM_Magick;"”PDF”;0;0;0;0;0;0)

The compression quality can be set using:

$err:=IM Set Image Properties (IM;IM_Pref_Quality;””;50;0;0;0)

* for 50% compression

Refer to the error addendum for possible error codes.

IM Create

IM Create(object; Width; Height; Color) -> error code

Parameter Type Description

Object Longint -> ImageMagick object

Width Longint -> Width of image

Height Longint -> Height of image

Color String -> Background color of image
Function result Longint <- Error code (0 = No error)

Description

This command creates a new empty picture, overwriting all information’s in object.
Width and Height specify the size of the image, Color is the background color in RGB
format (eg #FFFFFF) or X11 (eq red, black, blue). If the string starts with the # sign,
then the color in RGB format as hex. For examples how to calculate the RGB color see
4D’s programmers manual: SET RGB COLORS.

Refer to the error addendum for possible error codes.

IM Get Image Properties

IM Get Image Properties(object; Selector; String; paral; para2; para3; para4) ->
error code

Parameter
Object
Selector

String

Paral

Para2

Para3

Para4

Function result

Description
This command reads the properties of a loaded picture. Some selectors can be used
for Write, all for Read.

Selector

1
2

8

IM_Pref_Quality
IM_Pref_Size

IM_Pref_Geometry

IM_Pref_Magick

IM_Pref_Attribute

Type Description

Longint -> ImageMagick object
Longint -> function selector
Alpha/Text <-> text result

Num <- numeric result 1

Num <- numeric result 2

Num <- numeric result 3

Num <- numeric result 4

Longint <- Error code (0 = No error)

returns in Paral the quality of a compressed image

returns in Paral and Para2 the X/Y Size of the image in
Pixels using ImageMagick baseColumns/baseRows. This is
the raw size of the image

returns in Paral and Para2 the X/Y the Size of the image in
Pixel, in Para3 and Para4 the X/Y Resolution of the image,
using ImageMagick columns/rows/xResolution/yResolution.
This is the preferred size of the image when encoding.

returns in String the format of the current image (like JPEG
or GIF)

returns in String the content of the requested Exif, ITPC or
ICC attributes. Specify the requested attribute in String, like
“Exif:DateTime” or “Exif:ShutterSpeedValue”. After the
command is executed, the String parameter contains the
content of this attribute. If the attribute does not exist String
is empty. For a list of possible attribute names see:
http://www.exif.org/specifications.html

IM_Pref_BackgroundColor

returns in String the background color in RGB format (i.e.
#FFFFFF) or X11 (i.e. red, black, and blue). If the string
starts with the # sign, then the color in RGB format as hex.
For examples how to calculate the RGB color see 4D’s
programmers manual: SET RGB COLORS. The background
color is used for operations like rotate, wave, shear, etc.

IM_Pref_BorderColor

IM_Pref BoxColor

Returns in String the BorderColor. Format like
BackgroundColor

Returns in String the BoxColor. Format like BackgroundColor

Refer to the error addendum for possible error codes.

IM Set Image Properties

IM Set Image Properties(object; Selector; String; paral; para2; para3; para4) ->

error code

Parameter Type Description

Object Longint -> ImageMagick object
Selector Longint -> function selector

String Alpha/Text -> text result

Paral Num -> numeric parameter 1
Para2 Num -> numeric parameter 2
Para3 Num -> numeric parameter 3
Para4 Num -> numeric parameter 4
Function result Longint <- Error code (0 = No error)

Description
The command writes properties from a loaded image. Some selectors can be used for
Write, all for Read.

Selector

1 IM_Pref_Quality use Paral to set the quality of a compressed image

2 IM_Pref_Magick use String to change the format of an image,

like JPEG, GIF, BMP, TIFF, etc

6 IM_Pref_BackgroundColor
use value of String to set the background color in RGB
format (i.e. #FFFFFF) or X11 (i.e. red, black, and blue). If
the string starts with the # sign, then the color in RGB
format as hex. For examples on how to calculate the RGB
color see 4D Language Reference manual: SET RGB
COLORS. The background color is used for operations like
rotate, wave, shear, etc.

7 IM_Pref_BorderColor
use value of String to set the Border color. Format it like
Backgroundcolor.

8 IM_Pref_BoxColor

use value of String to set the Box color. Format it like
Backgroundcolor.

Refer to the error addendum for possible error codes.

IM Modify Image

IM Modify Image(object; Selector; String; paral; para2; para3; para4; para5, Para6)
-> error code

Parameter Type Description

Object Longint -> ImageMagick object
Selector Longint -> function selector

String Alpha/Text -> text result

Paral Num -> numeric parameter 1
Para2 Num -> numeric parameter 2
Para3 Num -> numeric parameter 3
Para4 Num -> numeric parameter 4
Para5 Num -> numeric parameter 5
Para6 Num -> numeric parameter 6
Function result Longint <- Error code (0 = No error)

Description
This command writes properties from a loaded image. Some selectors can be used for
Write, all for Read.

Selector

All values are based on the ImageMagick Mackick++ Image Manipulation Methods:
http://www.imagemagick.org/Magick++/Image.html#Image%20Manipulation%20Met
hods

You may find additional information on the ImageMagick pages at the location above.

IM_Mod_addNoise 1

Adds noise to images using the specified noise type. Possible values for Paral are:
UniformNoise
GaussianNoise
MultiplicativeGaussianNoise
ImpulseNoise
LaplacianNoise
PoissonNoise

u b wWNHFHO

IM_Mod_flip 2
Flips image (reflects each line in the vertical direction)

IM_Mod_flop 3
Flops image (reflects each line in the horizontal direction)

IM_Mod_implode 4
Implodes image (special effect). Factor is passed in Paral as floating value; usual
values are -20 to +20.

IM_Mod_rotate 5
Rotates image counter-clockwise by a specified number of degrees; Usual values for
Paral is 0..359 (floating value).

IM_Mod_crop 6
Crops image (subregion of original image). Para 1-4 defines: Left, Top, Right, Bottom.

IM_Mod_blur 7
Blur image. Paral specifies the radius of the Gaussian blur, in pixels, not counting the
center pixel. Para2 specifies the standard deviation of the Laplacian, in pixels.

IM_Mod_contrast 8
Contrast image (enhances intensity differences in an image). Paral is a longint
defining the sharpen value.

IM_Mod_despeckle 9
‘Despeckles’ image (reduce speckle noise). No parameters.

IM_Mod_adaptiveThreshold 10

Apply an adaptive thresholding to the image. An adaptive threshold is useful if the
ideal threshold level is not known in advance, or if the illumination gradient is not
constant across the image. Adaptive thresholds work by evaluating the average pixel
value for a given area (size specified by Paral=width and Para2=height) and using
the average as the threshold value. In order to remove residual noise from the
background, the threshold may be adjusted by subtracting a constant offset=Para3
(default zero) from the mean to compute the threshold.

% %K K K K K K K K K 11

IM_Mod_Zoom 12
Zooms image to specified size (Paral=Width, Para2=Height)

IM_Mod_Edge 13
Highlights edges of an image). Paral is the radius of the pixel neighborhood (longint).
Specify a radius of zero for automatic radius selection.

IM_Mod_Emboss 14

Emboss image (highlights edges with a 3D effect). Paral specifies the radius of the
Gaussian, in pixels, not counting the center pixel. Para2 specifies the standard
deviation of the Laplacian, in pixels. Both parameters are floating values.

IM_Mod_Enhance 15
Enhances the image (minimize noise). No parameters.

IM_Mod_Equalize 16
Equalizes the image (histogram equalization). No parameters.

IM_Mod_Frame 17

Adds decorative frame around image. Paral/Para2 = Width/Height. Para3/Para4 =
InnerBevel/OuterBevel

IM_Mod_Gamma 18

Applies a gamma correction. If Paral=0: Gamma correction of the separate channels
red (Para2), green (Para3), and blue (Para4). If Paral # 0: uniform red, green, and
blue correction.

IM_Mod_GaussianBlur 19

Applies a Gaussian blur to the image. The number of neighboring pixels to be included
in the convolution mask is specified by Para 1. For example, a width of one gives a
(standard) 3x3 convolution mask. The standard deviation of the Gaussian bell curve is
specified by Para2. Both parameters are floating values.

IM_Mod_Level 20

Adjust the levels of the image by scaling the colors falling between specified white and
black points to the full available quantum range. The parameters provided represent
the black, mid (gamma), and white points. The black point specifies the darkest color
in the image. Colors darker than the black point are set to zero. Mid point (gamma)
specifies a gamma correction to apply to the image. White point specifies the lightest
color in the image. Colors brighter than the white point are set to the maximum
quantum value. Paral specifies the black point, Para2 the white point, both as
percentage (0..100), Para 3 is the mid (gamma) and has a useful range of 0 to 10.

IM_Mod_Magnify 21
Magnifies the image by integral size. No parameters.

IM_Mod_Minify 22
Reduces the image by integral size. No parameters.

IM_Mod_MedianFilter 23
Filters image by replacing each pixel component with the median color in a circular
neighborhood. Paral = radius (floating value).

IM_Mod_Modulate 24

Sets the percentage of modulation for the hue (Para3), saturation (Para2), and
brightness (Paral) of an image. Modulation of saturation and brightness is as a ratio
of the new value over the current value (1.0 for no change). Modulation of hue is an
absolute rotation of -180 degrees to +180 degrees from the current position
corresponding to an argument range of 0 to 2.0 (1.0 for no change).

IM_Mod_Negate 25

Creates the negative of an image. Replaces every pixel with its complementary color
(white becomes black, yellow becomes blue, etc.). Set Paral to 1 to only negate
grayscale values in image.

IM_Mod_Normalize 26
Increases the contrast by adjusting the pixel values so that they cover the full range
of color values. No parameters.

IM_Mod_OilPaint 27
Make the image look like an oil painting. Para 1 = radius (longint)

IM_Mod_Raise 28
Lightens or darkens the edges of an image to give a 3-D raised or lowered effect.
Paral = Width, Para2= Height. Set Para5 to #0 to lower, O to raise.

IM_Mod_ReduceNoise 29

The principal function of noise peak elimination filters is to smooth the objects within
an image without losing edge information and without creating undesired structures.
The central idea of the algorithm is to replace a pixel with its next neighboring value
within a pixel window, if this pixel has been found to be noise. A pixel is defined as
noise if and only if this pixel is a maximum or minimum within the pixel window.

Use Paral to specify the width of the neighborhood. Set to 0 for automatic.

IM_Mod_Roll 30
Rolls the image (rolls image vertically and horizontally) by specified number of
columns (Paral) and rows (Para2)).

IM_Mod_Sample 31
Resizes the image using a pixel sampling algorithm. Paral = Width, Para2= Height.

IM_Mod_Scale 32
Resize image by using simple ratio algorithm. Paral = Width, Para2= Height.

IM_Mod_Segment 33

Segments (coalesces similar image components) by analyzing the histograms of the
color components and identifying units that are homogeneous with the fuzzy c-means
technique. Also uses quantizeColorSpace and verbose image attributes. Specify Paral,
as the number of pixels each cluster must exceed for the cluster threshold to be
considered valid. Default is 1.0. Para2 eliminates the noise in the second derivative of
the histogram. As the value is increased, you can expect a smoother second
derivative. The default is 1.5.

IM_Mod_Shade 34

Simulate the addition of a shade image using a distant light source. Specify azimuth
(Paral, default 30) and elevation (Para2, default 30) as the position of the light
source. By default, the shading results as a grayscale image. Set Para3 to 1 to shade
the red, green, and blue components of the image. Paral and Para2 are floating
values.

IM_Mod_Sharpen 35

Sharpens pixels in the image. Paral (Default 1.0) specifies the radius of the Gaussian,
in pixels, not counting the center pixel. Para2 (Default 0.5) specifies the standard
deviation of the Laplacian, in pixels, both are floating values.

IM_Mod_Shave 36
Shave pixels from image edges. Paral = Width, Para2= Height.

IM_Mod_Shear 37

Shearing slides one edge of an image along the X or Y axis, creating a parallelogram.
An X direction shear slides an edge along the X axis, while a Y direction shear slides
an edge along the Y axis. The amount of the shear is controlled by a shear angle. For
X direction shears, x degrees is measured relative to the Y axis, and similarly, for Y
direction shears y degrees is measured relative to the X axis.

Paral is the xShearAngle, Para2 the yShearAngle, both floating values.

Empty triangles left over from shearing the image are filled with the color defined as
borderColor.

IM_Mod_Solarize 38
Solarize image (similar to the effect seen when exposing a photographic film to light
during the development process). Paral = factor (Default 50.0), floating value.

IM_Mod_Spread 39
Spreads pixels randomly within image by specified amount (Paral, Default = 3,
longint)

IM_Mod_Swirl 40
Applies a swirl effect to an image (image pixels are rotated by an angle, expressed in
degrees (Paral, floating value)

IM_Mod_Threshold 41
Threshold image set by Paral, floating value.

IM_Mod_Trim 42
Trim edges that have the same color as the background color. No parameters.

IM_Mod_Unsharpmask 43

Replaces the image with a sharpened version of the original image using the unsharp
mask algorithm. Paral specifies the radius of the Gaussian, in pixels, not counting the
center pixel. Para2 specifies the standard deviation of the Gaussian, in pixels. Para3
specifies the percentage of the difference between the original and the blur image that
is added back into the original. Para4 specifies the threshold in pixels needed to apply
to the difference amount. All parameters are floating values.

IM_Mod_Wave 44
Alters an image along a sine wave. Paral = amplitude (Default = 25.0), Para2 =
wavelength (Default = 150.0).

Refer to the error addendum for possible error codes.

IM Draw

IM Draw(object; Selector; String; paral; para2; para3; para4) -> error code

Parameter Type Description

Object Longint -> ImageMagick object
Selector Longint -> function selector

String Alpha/Text -> text result

Paral Num -> numeric result 1

Para2 Num -> numeric result 2

Para3 Num -> numeric result 3

Para4 Num -> numeric result 4
Function result Longint <- Error code (0 = No error)

Description
The command allows drawing operations in an object, which can be a loaded image or
a newly created image.
The attributes of the drawing can be set (before executing IM Draw) with IM Set
Image Properties and selectors like IM_Pref_StrokeColor, IM_Pref_FillColor, etc.

Selector
1 IM_Draw_Circle
2 IM_Draw_Rectangle
3 IM_Draw_Arc
4 IM_Draw_Color
5 IM_Draw_Composite
6 IM_Draw_Ellipse

Creates a Circle. Paral/2 define the center point (X/Y),
Para3/4 define a point on the parameter to define the
radius

Creates a Circle, defined by Paral-4: left, top, right,
bottom

Draws an arc using the stroke color and based on the
circle starting at coordinates startX_,startY (Paral/Para2),
and ending with coordinates endX_,endY (Para3/Para4),
and bounded by the rotational arc
startDegrees_,endDegrees (Para5/Para)

Pixel is specified by X/Y = Paral/Para2. Color image
according to paintMethod (Para3). The dot method
redefines the color of the target pixel. The replace method
redefines the color any pixel that matches the color of the
target pixel. Floodfill redefines the color any pixel that
matches the color of the target pixel and is a neighboring
pixel, whereas filltoborder redefines the color any
neighbor pixel that is not the border color. Finally, reset
redefines the color all pixels. See below for PaintMethod.
Composite current image with contents of specified image,
rendered with specified width and height (Para4/Para5),
using specified composition algorithm (Para6), at specified
coordinates (Para2/Para3). The composite image is either
passed as IM_Object in Paral (created with IM New
Object) or as File path in stringpara. See below for a list of
possible values for CompositeOperator (Para5).

Draws an ellipse using the stroke color and thickness,
specified origin (Paral/Para2), x & y radius (Para3/Para4),
as well as specified start and end of arc in degrees
(Para5/Para6). If a fill color is specified, then the object is
filled with that color.

7 IM_Draw_Line Draws a line using stroke color and thickness using
starting and ending coordinates (Paral-Para4)

8 IM_Draw_Matte Changes the pixel matte value to transparent. The dot
method changes the matte value of the target pixel
(Paral/Para2). The replace method (Para3) changes the
matte value of any pixel that matches the color of the
target pixel. Floodfill changes the matte value of any pixel
that matches the color of the target pixel and is a
neighboring pixel, whereas filltoborder changes the matte
value of any neighbor pixel that is not the border color.
Finally reset changes the matte value of all pixels. See
below for PaintMethod.

9 IM_Draw_Point Draws a dot using stroke color and thickness at coordinate
Paral/Para2.

10 IM_Draw_RoundRectangle
Draw a rounded rectangle using stroke color and
thickness, with specified center coordinate (Paral/Para2),
specified width and height (Para3/Para4), and specified
corner width and height (Para5/Para6). If a fill color is
specified, then the object is filled.

PaintMethod
0 PointMethod Replaces pixel color at designated point.
1 ReplaceMethod Replaces color for all image pixels whose color match.
2 FloodfillMethod Replaces color for pixels surrounding pixel until

encountering a pixel that fails to match the color.

3 FillToBorderMethod Replaces color for pixels surrounding point until
encountering pixels matching the border’s color.

4 ResetMethod Replaces colors for all pixels in the image with the pen’s
color.

CompositeOperator
CompositeOperator is used to select the image composition algorithm used to
compose a composite image with the other image. Usually (12 =) each of the
composite image pixels are replaced by the corresponding image tile pixel.

1 OverCompositeOp The result is the union of the two image shapes with
the composite image obscuring the resulting image in
the region of the overlap.

2 InCompositeOp The result is simply a composite image cut by the
shape of the other image. None of the other image’s
data is included in the result.

3 OutCompositeOp The resulting image is a composite image with the
shape of the other image cut out.
4 AtopCompositeOp The result is the same shape as image, with the

composite image obscuring image there the image
shapes overlap. Note that this differs from

10

11

12

13

14

15

16

XorCompositeOp

PlusCompositeOp

MinusCompositeOp

AddCompositeOp

SubtractCompositeOp

DifferenceCompositeOp
MultiplyCompositeOp
BumpmapCompositeOp
CopyCompositeOp
CopyRedCompositeOp

CopyGreenCompositeOp

CopyBlueCompositeOp

OverCompositeOp because the portion of the composite
image outside of image's shape does not appear in the
resulting image.

The result is the image data from both images for the
area that is outside the overlap region. The overlap
region is left blank.

The result is just the sum of the images’ data. Output
values are cropped to 255 (no overflow). This operation
is independent of the matte channels.

The result is the subtraction of one image from the
other, with overflow cropped to zero. The matte
channel is ignored (set to 255).

The result of is the addition of the two images, with
overflow ‘wraparound’ (modulo 256).

The result is the subtraction of one image from the
other, with underflow ‘wraparound’ (mod 256). The add
and subtract operators can be used to perform
reversible transformations.

The result is comparable to that of abs(composite
image - image). This is useful for comparing two very
similar images.

The result is comparable to that of (composite image x
image).

The resulting image is shaded by the composite image.
The resulting image is an image replaced with
composite image. Here the matte data is ignored.

The resulting image is the red layer in the image
replaced with the red layer in the composite image. The
other layers are copied untouched.

The resulting image is the green layer in the image
replaced with the green layer in the composite image.
The other layers are copied untouched.

The resulting image is the blue layer in the image
replaced with the blue layer in the composite image.
The other layers are copied untouched.

17 CopyOpacityCompositeOp The resulting image is the matte layer in the image
replaced with the matte layer in composite image. The
other layers are copied untouched.

The image compositor requires a matte, or alpha
channel in the image for some operations. This extra
channel usually defines a mask which represents a sort
of a ‘cookie-cutter mask’ for the image. This is the case
when matte is 255 for pixels inside the shape, zero
outside, and between zero and 255 on the boundary.
For certain operations, if the image does not have a
matte channel, it is initialized with 0 for any pixel
matching in color to pixel location (0,0), otherwise 255
(to work properly borderWidth must be 0).

18 ClearCompositeOp N.A.

19 DissolveCompositeOp N.A.

20 DisplaceCompositeOp N.A.

21 ModulateCompositeOp N.A.

22 ThresholdCompositeOp N.A.

refer to the error addendum for possible error codes.

Utlities

IM Last Error

IM Last Error (object; string) -> error code

Parameter Type Description

Object Longint -> ImageMagick object
string Text <- Error documentation
Function result Longint <- Error code (0 = No error)

Returns an error message in English for the last error with this object. This returns
useful information only if a command returned -2.

IM Get Format List

IM Get Format List (list) -> error code

Parameter Type Description

list Array Text <- Format list
Function result Longint <- Error code (0 = No error)

This command fills a text array with the list of image formats supported by
ImageMagick. Each element describes a supported format, like:

GIF (CompuServe graphics interchange format) rwm

JP2 (JPEG-2000 File Format Syntax) rw

JPEG (Joint Photographic Experts Group JFIF format) rw

TIFF (Tagged Image File Format) rwm

The first word is the format (used as file extension and as “Magick” String with IM Set
Image Properties(...;IM_ Pref_Magick...)). Separated by a space is the description of
the format. The last word (in fact always the last 3 characters) describes the
supported features: r=read, w=write, m=multiple image/page.

ImageMagick handles many image formats indirectly by calling other tools or libraries.
This means the supported formats depend on the installed libraries, which makes
ImageMagick often difficult to install and maintain.

To avoid this, the plug-in is compiled as a “static” build, including many needed
libraries or other tools. The disadvantage is that non included libraries are not
supported at all, even if they are installed on the customer’s computer. Especially
Postscript formats (like EPS/EPSF/PS/PDF) are not supported for reading, only for
writing. Also movie formats (MPEG, MV2, AVI) are not supported.

Error codes

The plug-in returns the following error codes:

-1 Unknown Object (not initialized with IM New Object)
-2 ImageMagick Framework Error, use IM Last Error to get more info
-3 Uninitialized Object (created with IM New Object, but does not contain

an image yet)
-4 Unsupported Selector

