
Mirroring with 4D 2004.4, PART II

By Kent Wilbur, Manager Information Systems, 4D, Inc.

Technical Note 06-37

PartnerWare
--

4D grants a limited license to partners to use the software described in this
technical note for use solely for the development of 4D applications
(“PartnerWare”). This right to use is limited to incorporation of PartnerWare
in a 4D based software application and may not be used on a stand alone
basis or incorporated with software other than 4D software. This is a limited
term license which shall terminate when licensee is no longer a Partner for
any reason. Applications developed with PartnerWare can run indefinitely but
no new development is allowed with PartnerWare if the licensee is no longer
a Partner. 4D owns all rights to the PartnerWare including derivative rights.

The Mirroring process – Main Server side
--

The responsibility of actually doing the mirroring falls upon the main server.
It periodically creates a new log file then ships that log file off to the mirrored
server(s). The method Mirror_P_MirrorProcess is a small scheduling method
that is simply delayed most of the time. The fact that it is small coupled with
the fact that it is always in memory, means this method maintains a
relatively small footprint. Most of the code needed resides in other methods
that are loaded only when needed. It handles delaying the process and it also
handles rescheduling the mirror time based upon changes in the preference
settings while the process is delayed. When the client updates the settings,
the process wakes up and recalculates when the next mirroring is to take
place. When the mirror should run is based upon a date/time stamp
mechanism. If the mirroring fails for some reason the method loops and tries
again based upon the preferences. Finally, it e-mails any error messages as
appropriate.

If (False)
 ` Method: Mirror_P_MirrorProcess
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 9/27/2005

 ` Purpose: The Mirroring Process project method

<>Mirror_f_Version2004x4:=True
<>Mirror_fK_Wilbur:=True

End if

Open window(200;200;450;400;0;"Mirror Status")
 ` Declare local varaibles
C_BOOLEAN($fOK)
C_STRING(6;$sVersion)
C_LONGINT($LDelayTicks)
C_LONGINT($LErrorCode)
C_LONGINT($LPosition)
C_LONGINT($LRetryCounter)
C_LONGINT($LSMTPid)
C_TEXT($tDateTimeDelay)
C_TEXT($tMessageText)
C_TEXT($tMirrorScheduleMode)
C_TEXT($Mirror_tLastBackupFolderPath)
C_TEXT($Mirror_tLastBackupID)
C_TEXT($Mirror_tNumberBackupsValue)
C_TEXT($Mirror_tCurrentDiskFreeSpace)
C_TIME($hCurrentTime)
C_TIME($hDelayInterval)
C_TIME($hDelayUntil)

$sVersion:=Application version
Mirror_HandleMirrorPreferences ("Load")

Case of
: (Application type#4D Server)

ALERT("Mirroring only works with 4D Server.")
: (Num($sVersion)<804)

ALERT("This Mirroring code requires version 2004.4 or higher.")
Else

$Mirror_tLastBackupID:=""
$Mirror_tNumberBackupsValue:=""
$Mirror_tLastBackupFolderPath:=""
$Mirror_tCurrentDiskFreeSpace:=""
Mirror_HandleBackupPreferences ("Load";->$Mirror_tLastBackupID;->$Mirror_tNumberBackupsValue;-

>$Mirror_tLastBackupFolderPath;->$Mirror_tCurrentDiskFreeSpace)
<>Mirror_LCurrentDiskFreeSpace:=Num($Mirror_tCurrentDiskFreeSpace)

$tMirrorScheduleMode:=<>Mirror_tScheduleMode
$hDelayInterval:=<>Mirror_hTimeInterval
$hCurrentTime:=Current time ` Set now for use later
Mirror_tLastBackupTime:=Mirror_tDateTimeStamp (Current date;Current time)

While ((Not(<>Mirror_fQuit)) & (<>Mirror_tScheduleMode#"Off"))
Repeat

Case of
: ($tMirrorScheduleMode="Interval Only")

If ($hDelayInterval#<>Mirror_hTimeInterval)
$hDelayInterval:=<>Mirror_hTimeInterval

End if

If ($hDelayInterval<?00:15:00?)
$hCurrentTime:=Current time ` Less than 15 minutes, set to relative to time last

mirroring _finished rather than time began
End if

$hDelayUntil:=$hCurrentTime+$hDelayInterval
If ($hDelayUntil>?24:00:00?)

$tDateTimeDelay:=Mirror_tDateTimeStamp (Add to date(Current
date;0;0;1);$hCurrentTime+$hDelayInterval-?24:00:00?)

Else
$tDateTimeDelay:=Mirror_tDateTimeStamp (Current date;$hDelayUntil)

End if

Else
$tDateTimeDelay:=<>Mirror_tNextTimeIntervalMode
Mirror_HandleMirrorPreferences ("SetNextTimeInterval")
If ($tDateTimeDelay#<>Mirror_tNextTimeIntervalMode)

Mirror_HandleMirrorPreferences ("Save")
End if

$tDateTimeDelay:=<>Mirror_tNextTimeIntervalMode
End case

$hDelayUntil:=Time(Substring($tDateTimeDelay;9;2)+":"+Substring($tDateTimeDelay;11;2)+":"+Substri
ng($tDateTimeDelay;13;2))

If (Date(Substring($tDateTimeDelay;5;2)+"/"+Substring($tDateTimeDelay;7;2)+"/"+
Substring($tDateTimeDelay;1;4))>(Current date))

` Next schedule after midnight
$LDelayTicks:=($hDelayUntil+?24:00:00?)-$hCurrentTime*60

Else
$LDelayTicks:=$hDelayUntil-$hCurrentTime*60

End if
Mirror_MyDelay (Current process;$LDelayTicks)
$hDelayUntil:=?00:00:00?
 ` It is possible that a Client machine could be changing the delay mode
If ($tMirrorScheduleMode#<>Mirror_tScheduleMode)

` The mode has been changed need to recalculate time
$tMirrorScheduleMode:=<>Mirror_tScheduleMode

End if

Until ((Mirror_tDateTimeStamp (Current date;Current time)>=
$tDateTimeDelay) | (<>Mirror_tScheduleMode="Off"))

If (<>Mirror_tScheduleMode#"Off") ` If we are not turning off the mirroring
$fOK:=False
$tMessageText:=""
Repeat

MESSAGE("Starting mirroring: "+String(Current time)+Char(13)) ` JYFH
$LErrorCode:=Mirror_LSendLogFile

Case of
: ($LErrorCode=0) ` Mirroring Sucessful

MESSAGE("Mirror Completed: "+String(Current time)+Char(13))
$fOK:=True

:
($LErrorCode#1403) | ($LErrorCode#1407) | ($LErrorCode#1410) | ($LErrorCode#1412) | ($LErrorCode#14
22) ` Fatal mirroring error

<>Mirror_tScheduleMode:="Off" `Stop the mirroring
MESSAGE("Error "+String($LErrorCode)+"during mirroring: "+String(Current

time)+Char(13))
$fOK:=True ` JY: If we stop the mirroring, we should stop trying ` JYFH Modif

: ($LErrorCode#1409) & ($LErrorCode#1411) ` Unexpected error stop trying this cycle
$fOK:=True
MESSAGE("Error "+String($LErrorCode)+"during mirroring: "+String(Current

time)+Char(13))
Else

 ` An error of 1411 happens when a critical operation prevents creating the new log file
Transactions or Indexing

 ` jyfh: Same if error = -17053: backup in progress
MESSAGE("Error "+String($LErrorCode)+"during log sent: "+String(Current

time)+Char(13))
If ($LRetryCounter<<>Mirror_LTransactionRetries)

$LRetryCounter:=$LRetryCounter+1

Mirror_MyDelay (Current process;3600)
 ` Wait one minute before retrying jyfh was 360

Else
$fOK:=True ` Stop trying

End if
End case

If (MirrorSOAP_tErrorMessage#"") ` An error occurred add to the error message
$LPosition:=Position(MirrorSOAP_tErrorMessage;$tMessageText)
If ($LPosition=0)

 ` If the error message is not already in the outgoing message add it to the message
$tMessageText:=$tMessageText+MirrorSOAP_tErrorMessage+Char(Carriage return)

End if
End if

Until ($fOK)

 ` Check the backup Disk Size is the minimium size is set
If (<>Mirror_LMinimumDiskFreeSpace>0)

$Mirror_tLastBackupID:=""
$Mirror_tNumberBackupsValue:=""
$Mirror_tLastBackupFolderPath:=""
$Mirror_tCurrentDiskFreeSpace:=""
Mirror_HandleBackupPreferences ("Load";->$Mirror_tLastBackupID;-

>$Mirror_tNumberBackupsValue;->$Mirror_tLastBackupFolderPath;->$Mirror_tCurrentDiskFreeSpace)
<>Mirror_LCurrentDiskFreeSpace:=Num($Mirror_tCurrentDiskFreeSpace)

If (<>Mirror_LCurrentDiskFreeSpace<<>Mirror_LMinimumDiskFreeSpace)
$LErrorCode:=-17054
Mirror_SOAP_ErrorHandling ($LErrorCode)
$tMessageText:=$tMessageText+Char(Carriage return

)+MirrorSOAP_tErrorMessage+Char(Carriage return)
$tMessageText:=$tMessageText+"Structure File: "+Structure file
$tMessageText:=$tMessageText+"Drive Used for log files and the last log file:

"+<>Mirror_tLastLogNumber
$tMessageText:=$tMessageText+"Available Space Remaining on the Drive:

"+$Mirror_tCurrentDiskFreeSpace+" MB"
End if

End if

Case of
: ($LErrorCode=0) ` Mirroring Sucessful nothing else to do
: (Length(<>Mirror_tSMTPServer)=0) & (<>Mirror_tSMTPServer#"None")

` Nothing to do no place to send error message
: (Position(".";<>Mirror_tSMTPServer)<1) | ((Position(".";<>Mirror_tSMTPServer))=

(Length(<>Mirror_tSMTPServer)))
`invalid format for mail server exists (must have a period to be valid and not only a period at the end)

Else
 `E-Mail Error message
 ` Note: This might be added to an existing e-mail or other messaging system in the database.
 ` If such a system involves saving records
 ` But be sure it is NOT done on the mirrored server side only on the Master server

 ` The problem with this solution is if the SMTP server is down, the message will not be sent,
 ` so an existing messaging system already in the database might be a better solution

$LErrorCode:=SMTP_New ($LSMTPid)
$LErrorCode:=SMTP_Host ($LSMTPid;<>Mirror_tSMTPServer)
$LErrorCode:=SMTP_From ($LSMTPid;<>Mirror_tErrorEMailAccount)
$LErrorCode:=SMTP_Subject ($LSMTPid;"Error with Mirroring for

"+<>Mirror_tDatabaseName)
$LErrorCode:=SMTP_To ($LSMTPid;<>Mirror_tErrorEMailAccount)

$LErrorCode:=SMTP_Body ($LSMTPid;$tMessageText)
If (<>Mirror_tAuthenticationRequired="Yes")

$LErrorCode:=SMTP_Auth
($LSMTPid;<>Mirror_tAuthenticationUserName;<>Mirror_tAuthenticationPassword)

End if
$LErrorCode:=SMTP_Send ($LSMTPid)
$LErrorCode:=SMTP_Clear ($LSMTPid)

End case

$hCurrentTime:=Current time ` Reset for next time interval
End if

End while

End case
`End of method

Be sure to note that it is possible fatal errors might occur which would make
future mirroring impossible. In this case I have stopped the mirroring process
from running causing further problems. But, if you haven’t entered
someplace to send an e-mail, you will never know that the mirroring process
has stopped.

The Mirror_SOAP_LHandleEvents method actually does most of the work. But
it is controlled by the Mirror_LSendLogFile method. if first calls
Mirror_SOAP_LHandleEvents to verify that at least one mirror is present. If a
mirror is not currently available, a new log file should not be created. After
creating the log file the method determines the type of log file integration
that should take place. Integration alone, or integration and backup of the
mirrored server.

If (False)
 ` Method: Mirror_LSendLogFile
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/10/2006

 ` Purpose: Handles creating and sending the log file to mirroring server(s)

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare parameters
C_LONGINT($0)

 ` Declare local variables
C_LONGINT($LError)
C_TEXT($tCurrentTime)
C_TEXT($tLastLogFile)
C_TEXT($tIntegrateType)
C_TIME($hAbortTime)
C_TIME($hCurrentTime)

MirrorSOAP_LErrorNumber:=0
MirrorSOAP_tErrorMessage:=""
$LError:=0

If (Not(<>Mirror_fQuit))
 $hCurrentTime:=Current time
 Case of
 : (Mirror_SOAP_LHandleEvents (<>Mirror_tDatabaseName;"VerifyPresent";

<>Mirror_tServerIPAddress)#0) ` Correct database is not available
 $LError:=-17050
 MirrorSOAP_tErrorMessage:="Mirror database is not available. Mirroring at "+String(

Current time;HH MM)+" on "+String(Current date;Short)+" did not take place."

 Else
 $hAbortTime:=Current time+<>Mirror_hTransactionDelay

ON ERR CALL("Mirror_HandleMirrorError")
 While (Semaphore("MirroringInProgress")) ` This semphore is to hold processes from starting

transactions while the new log file is being created
 Mirror_MyDelay (Current process;1) ` Technicaly this line of code should never happen since all

other code should only do a test semaphore, but it is a safe way to write the code
 End while
 Repeat
 If (MirrorSOAP_LErrorNumber#0)
 Mirror_MyDelay (Current process;15) ` If the New log file below was not created wait before

trying again.
 End if
 MirrorSOAP_LErrorNumber:=0
 $tLastLogFile:=New log file ` Get the full path name of the log file that has just been closed
 Until ((MirrorSOAP_LErrorNumber=0) | (Current time>$hAbortTime))
 CLEAR SEMAPHORE("MirroringInProgress") ` Let any process waiting for the semaphore to clear

continue once the file is created we don't need to lock eveyone
out to send the file to the mirror machines

 ON ERR CALL("")
 End case

 Case of
 : (MirrorSOAP_LErrorNumber=1409) | (MirrorSOAP_LErrorNumber=1411) ` Transaction or other

critical operation in progress
 $LError:=MirrorSOAP_LErrorNumber
 Mirror_SOAP_ErrorHandling ($LError)

 : (Length($tLastLogFile)>0)
 Case of
 : (<>Mirror_tBackupScheduleMode="Use Mirror Machine Scheduler")
 $tIntegrateType:="IntegrateLog"

 : (<>Mirror_tBackupScheduleMode="via Main Server Time")
 Case of
 : (<>Mirror_tScheduleMode="Time Only")
 $tIntegrateType:="IntegrateLog&Backup"
 : (<>Mirror_tScheduleMode="Time & Interval") | (<>Mirror_tScheduleMode="Interval Only")
 Case of
 : (String($hCurrentTime;HH MM)=String(<>Mirror_hBackupTime;HH MM))
 $tIntegrateType:="IntegrateLog&Backup"
 : (($hCurrentTime+<>Mirror_hTimeInterval)<<>Mirror_hBackupTime) ` Still time for

another backup
 $tIntegrateType:="IntegrateLog"
 : ((<>Mirror_hBackupTime+<>Mirror_hTimeInterval)<$hCurrentTime) ` Backup already

occurred for this date
 $tIntegrateType:="IntegrateLog"
 : (($hCurrentTime><>Mirror_hBackupTime) & ((<>Mirror_hBackupTime+

<>Mirror_hTimeInterval)<$hCurrentTime)) ` This is the time for the backup
 $tIntegrateType:="IntegrateLog&Backup"
 Else
 $tIntegrateType:="IntegrateLog"

 End case

 End case

 : (<>Mirror_tBackupScheduleMode="via Main Server Interval") |
(<>Mirror_tBackupScheduleMode="via Main Server Time & Interval")

 ` Find the next scheduled backup time from the last time it actually took place
 $tCurrentTime:=Mirror_tDateTimeStamp (Current date;$hCurrentTime)
 If ($tCurrentTime><>Mirror_tNextBackupIntervalMode)
 Mirror_HandleMirrorPreferences ("SetNextBackupInterval")
 $tIntegrateType:="IntegrateLog&Backup"
 Else
 $tIntegrateType:="IntegrateLog"
 End if

 End case

 <>Mirror_tLastLogNumber:=$tLastLogFile
 Mirror_HandleMirrorPreferences ("Save")

 $LError:=Mirror_SOAP_LHandleEvents (<>Mirror_tDatabaseName;$tIntegrateType;
<>Mirror_tServerIPAddress;$tLastLogFile) ` Send the log file to the server

 End case

End if

$0:=$LError
 `End of method

The Mirror_LHandleEvents method prepares for the actual connections to the
mirroring database(s). Since our code can handle multiple mirrors, it became
necessary to create a mechanism to handle the situation of one the mirrors
being down, while others remain operating. The situation could be temporary
or permanent. Therefore, just because one specified mirrors is down
mirroring should continue as long as one is present. The VerifyPresent
routine checks until it finds one of the mirrors active. If found it returns to
Mirror_LSendLogFile (above) which will create the new log file.

If (False)
 ` Method: Mirror_LHandleEvents(text;text;text;text)
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/10/2006

 ` Purpose: Handles creating and sending the log file to mirroring server(s)

<>Mirror_f_Version2004x4:=True
<>Mirror_fK_Wilbur:=True

End if

 ` Declare parameters
C_LONGINT($0)
C_TEXT($1;$tMirrorDatabaseName)
C_TEXT($2;$tMirrorAction)
C_TEXT($3;$tMirrorIPAddress)
C_TEXT($4;$tLastLogFile)

 ` Declare local variables
ARRAY TEXT($atMirrors;0)
ARRAY TEXT($atLogFiles;0)
C_BOOLEAN($Mirror_fBackupIncluded)
C_BLOB($Mirror_oLogFile)
C_LONGINT($i;$j)
C_LONGINT($LError)
C_LONGINT($LSizeOfArray)
C_TEXT($tLogFileNames)
C_TEXT($tLogFilePath)

 ` Reassign for readability
$tMirrorDatabaseName:=$1
$tMirrorAction:=$2
$tMirrorIPAddress:=$3
If (Count parameters>3)

$tLastLogFile:=$4
End if

 ` Set default values
$LError:=0

Mirror_Text2Array ($tMirrorIPAddress;->$atMirrors;",")

$LSizeOfArray:=Size of array($atMirrors)

Case of
: ($tMirrorAction="VerifyPresent")

For ($i;1;$LSizeOfArray)
$LError:=Mirror_proxy_SOAP_LHandleEvents ($tMirrorDatabaseName;$tMirrorAction;$atMirrors{$i})
If (($LError=0) & (MirrorSOAP_LResult#1)) ` Mirror is present

MirrorSOAP_LErrorNumber:=0
MirrorSOAP_tErrorMessage:=""
$i:=$LSizeOfArray

End if
End for

: ($tMirrorAction="IntegrateLog@")
$Mirror_fBackupIncluded:=($tMirrorAction="IntegrateLog&Backup")
If ($LSizeOfArray>1) ` Save the log file to the text files

For ($i;1;$LSizeOfArray)
Mirror_HandleMultipleMirrorsXML ("AddLog";$atMirrors{$i};->$tLastLogFile)

End for

For ($i;1;$LSizeOfArray)
Mirror_HandleMultipleMirrorsXML ("Load";$atMirrors{$i};->$tLogFileNames)
ARRAY LONGINT($aLErrorNumber;0)
ARRAY TEXT($atErrorMessages;0)
ARRAY TEXT($atLogFiles;0)
Mirror_Text2Array ($tLogFileNames;->$atLogFiles;",")

For ($j;1;Size of array($atLogFiles))
Case of

 ` If there are more than one log file to be integrated and the backup is taking place place
`backup only when the last log file is sent

: ($Mirror_fBackupIncluded & ($j>1) & ($j=Size of array($atLogFiles)))
$tMirrorAction:="IntegrateLog&Backup"

: ($Mirror_fBackupIncluded & ($j<Size of array($atLogFiles)))
$tMirrorAction:="IntegrateLog"

Else ` The scheduled current action is correct
End case

DOCUMENT TO BLOB($atLogFiles{$j};$Mirror_oLogFile)
If (BLOB size($Mirror_oLogFile)>10000)

` If larger than10000 bytes compress the blob to reduce network bandwidth usage
COMPRESS BLOB($Mirror_oLogFile)

End if

$tLogFilePath:=Mirror_tGetFolderPathnames ($atLogFiles{$j})
If ($tLogFilePath#$tLastLogFile) ` Strips off the full pathname if present

$tLastLogFile:=(Substring($atLogFiles{$j};Length($tLogFilePath)+1))
End if
$LError:=Mirror_proxy_SOAP_LHandleEvents

($tMirrorDatabaseName;$tMirrorAction;$atMirrors{$i};->$Mirror_oLogFile;$tLastLogFile)
 ` Send the log file to the server

If ($LError=0) ` Success delete the file from the array
$atLogFiles{$j}:=""

Else
APPEND TO ARRAY($aLErrorNumber;$LError) ` Add any error numbers to the error array
If (Length(MirrorSOAP_tErrorMessage)=0)

Mirror_SOAP_ErrorHandling ($LError)
End if
APPEND TO ARRAY($atErrorMessages;$atMirrors{$i}+" - "+MirrorSOAP_tErrorMessage)

 ` Save the error message along with the server that generated the error
MirrorSOAP_tErrorMessage:=""
$j:=Size of array($atLogFiles) ` There was an error we must abort trying this backup

End if

End for

$tLogFileNames:=""
For ($j;1;Size of array($atLogFiles)) ` See if there were any log files NOT sent and integrated

If (Length($atLogFiles{$j})>0) ` If so add them so they get sent next time
If (Length($tLogFileNames)>0)

$tLogFileNames:=$tLogFileNames+","
End if
$tLogFileNames:=$tLogFileNames+$atLogFiles{$j}

End if
End for
 ` Save the log segments still to be sent or wipe and wipe out

`from the preferences the file that were sucessfully sent
Mirror_HandleMultipleMirrorsXML ("Save";$atMirrors{$i};->$tLogFileNames)

End for

$LSizeOfArray:=Size of array($aLErrorNumber) ` Check for any errors that may have occurred
If ($LSizeOfArray>0)

MirrorSOAP_tErrorMessage:=""
For ($i;1;$LSizeOfArray)

$LError:=$aLErrorNumber{$i} ` Any error number will do
MirrorSOAP_tErrorMessage:=MirrorSOAP_tErrorMessage+$atErrorMessages{$i}

+Char(Carriage return) ` Combine all the error messages
End for

End if

Else
DOCUMENT TO BLOB($tLastLogFile;$Mirror_oLogFile)
If (BLOB size($Mirror_oLogFile)>10000)
 ` If larger than10000 bytes compress the blob to reduce network bandwidth usage

COMPRESS BLOB($Mirror_oLogFile)
End if

$tLogFilePath:=Mirror_tGetFolderPathnames ($tLastLogFile)

If ($tLogFilePath#$tLastLogFile) ` Strip off the full path name if present
$tLastLogFile:=(Substring($tLastLogFile;Length($tLogFilePath)+1))

End if
$LError:=Mirror_proxy_SOAP_LHandleEvents ($tMirrorDatabaseName;$tMirrorAction;$atMirrors{1};-

>$Mirror_oLogFile;$tLastLogFile) ` Send the log file to the server
If ($LError#0)

Mirror_SOAP_ErrorHandling ($LError)
Else

Repeat
$LError:=Mirror_proxy_SOAP_LHandleEvents

($tMirrorDatabaseName;"Statusintegration";$atMirrors{1})
 ` test is integration is over

DELAY PROCESS(Current process;500)
Until (($LError#0) | (MirrorSOAP_LResult#2))

End if
End if

End case

$0:=$LError
 ` End of method

The log is transmitted and the status is checked through a SOAP request. If
the status equals 2, the log is being integrated and the process is delayed
until an error is returned or ‘MirrorSOAP_LResult=1’. This allows us to handle very
large logs without encountering timeout problems with the SOAP connection.
If the creation of the new log file is successful, the path to the just closed log
file segment is passed to the method. Thinking about the problem of multiple
mirrors, each log file segment must be integrated in order to each mirror. It
is impossible to manage each mirror separately because there is no way to
create a log file beginning at a specified point in the log file. Yet, if one of the
mirrors is temporarily offline. It still must receive the log file segments in
correct order.

My solution was to create an XML preferences file for each mirror machine.
The only thing in the preferences file is a list of all the logs that need to be
integrated to that specific server. So the first step in integrating the log files
into the mirrored servers is to append to each servers XML preferences file
the full path to the just closed log file segment.

Then the code will loop through each mirror machine reading the XML
preferences for that machine and send in order all log file segments found in
the preferences file. Deleting their name from the file once the file has been
successfully sent. Normally, the XML preferences has only one entry, the
most recent log segment. But if a mirror machine has been off line there
might be several segments to send to be integrated. Once the mirror comes
back online. Each segment will be sent in order, and the mirror is
successfully brought up to date. Note: In the event there are more than one
log segment to integrate and the task is to both integrate and backup. The
backup will only occur when the last segment has been integrated.

The method Mirror_HandleMultipleMirrorsXML is a simple method similar to
the other XML parsing method that was listed earlier in this technical note.
Please feel free to glance at it if you are curious about exactly how it works.

Each log file segment is stuffed into a BLOB and sent via SOAP to the
mirrored server. (Note: As I mentioned before this uses SOAP, but other
mechanisms could be built instead.) Feel free to study the code in the
Mirror_proxy_SOAPHandleEvents method, but it was automatically generated
by the Web Services Wizard and not modified significantly other than to use
a parameter for the location of the mirror server.

 : ($tMirrorAction="IntegrateLog@")
 $Mirror_fBackupIncluded:=($tMirrorAction="IntegrateLog&Backup")
 If ($LSizeOfArray>1) ` Save the log file to the text files
 For ($i;1;$LSizeOfArray)
 Mirror_HandleMultipleMirrorsXML ("AddLog";$atMirrors{$i};->$tLastLogFile)
 End for

 For ($i;1;$LSizeOfArray)
 Mirror_HandleMultipleMirrorsXML ("Load";$atMirrors{$i};->$tLogFileNames)
 ARRAY LONGINT($aLErrorNumber;0)
 ARRAY TEXT($atErrorMessages;0)
 ARRAY TEXT($atLogFiles;0)
 Mirror_Text2Array ($tLogFileNames;->$atLogFiles;",")

 For ($j;1;Size of array($atLogFiles))
 Case of ` If there are more than one log file to be integrated and the backup is

taking place backup only when the last log file is sent
 : ($Mirror_fBackupIncluded & ($j>1) & ($j=Size of array($atLogFiles)))
 $tMirrorAction:="IntegrateLog&Backup"
 : ($Mirror_fBackupIncluded & ($j<Size of array($atLogFiles)))
 $tMirrorAction:="IntegrateLog"
 Else ` The scheduled current action is correct
 End case

 DOCUMENT TO BLOB($atLogFiles{$j};$Mirror_oLogFile)
 If (BLOB size($Mirror_oLogFile)>10000) ` If larger than10000 bytes compress the

blob to reduce network bandwidth usage
 COMPRESS BLOB($Mirror_oLogFile)
 End if

 $tLogFilePath:=Mirror_tGetFolderPathnames ($atLogFiles{$j})
 If ($tLogFilePath#$tLastLogFile) ` Strip off the full path name if present
 $tLastLogFile:=(Substring($atLogFiles{$j};Length($tLogFilePath)+1))
 End if
 $LError:=Mirror_proxy_SOAP_LHandleEvents ($tMirrorDatabaseName;

$tMirrorAction;$atMirrors{$i};->$Mirror_oLogFile;$tLastLogFile)
` Send the log file to the server

 If ($LError=0) ` Success delete the file from the array
 $atLogFiles{$j}:=""
 Else
 APPEND TO ARRAY($aLErrorNumber;$LError) ` Add any error numbers to

 the error array
 If (Length(MirrorSOAP_tErrorMessage)=0)
 Mirror_SOAP_ErrorHandling ($LError)
 End if
 APPEND TO ARRAY($atErrorMessages;$atMirrors{$i}+

" - "+MirrorSOAP_tErrorMessage)
` Save the error message along with the server that generated the error

 MirrorSOAP_tErrorMessage:=""
 $j:=Size of array($atLogFiles)` There was an error we must abort trying

this backup
 End if

 End for

 $tLogFileNames:=""
 For ($j;1;Size of array ($atLogFiles)) ` See if there were any log files NOT sent

and integrated
 If (Length ($atLogFiles{$j})>0) ` If so add them so they get sent next time
 If (Length($tLogFileNames)>0)
 $tLogFileNames:=$tLogFileNames+","
 End if
 $tLogFileNames:=$tLogFileNames+$atLogFiles{$j}
 End if
 End for
 ` Save the log segments still to be sent or wipe and wipe out from the preferences the

 file that were sucessfully sent
 Mirror_HandleMultipleMirrorsXML ("Save";$atMirrors{$i};->$tLogFileNames)

 End for

 $LSizeOfArray:=Size of array($aLErrorNumber) ` Check for any errors that may have
occurred

 If ($LSizeOfArray>0)
 MirrorSOAP_tErrorMessage:=""
 For ($i;1;$LSizeOfArray)
 $LError:=$aLErrorNumber{$i} ` Any error number will do
 MirrorSOAP_tErrorMessage:=MirrorSOAP_tErrorMessage+$atErrorMessages{$i}+

Char(Carriage return) ` Combine all the error messages
 End for
 End if

If there is only one mirror machine. (Probably normal for most uses of
mirroring) the log segment is sent to the mirroring server and no XML
peferences for each server are needed.

 Else
 DOCUMENT TO BLOB($tLastLogFile;$Mirror_oLogFile)
 If (BLOB size($Mirror_oLogFile)>10000) ` If larger than10000 bytes compress the blob to

reduce network bandwidth usage
 COMPRESS BLOB($Mirror_oLogFile)
 End if

 $tLogFilePath:=Mirror_tGetFolderPathnames ($tLastLogFile)
 If ($tLogFilePath#$tLastLogFile) ` Strip off the full path name if present
 $tLastLogFile:=(Substring($tLastLogFile;Length($tLogFilePath)+1))
 End if
 $LError:=Mirror_proxy_SOAP_LHandleEvents ($tMirrorDatabaseName;$tMirrorAction;

$atMirrors{1};->$Mirror_oLogFile;$tLastLogFile) ` Send the log file to the server
 If ($LError#0)
 Mirror_SOAP_ErrorHandling ($LError)
 End if
 End if

End case

$0:=$LError
 ` End of method

The Mirroring process – Mirrored Server side
--

The mirrored server does basically nothing except sit and wait. It isn’t even
running any processes. If your database has stored procedures that run on
the server, you should probably disable them by checking to see if the server
is a mirrored server before beginning the stored procedures.

When a SOAP call from the main server hits the SOAP entry method
MIRROR_SOAP_MirrorHandleEvents the mirrored server goes to work. It
returns a 0 if the action succeeded or an error code if the action failed.

It has two main actions. First verify that the mirrored database is present
and correctly named. The second is to integrate the log with the option to
also backup the database.

If (False)
 ` Method: SOAP_MirrorHandleEvents
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/26/2006

 ` Purpose: Handles SOAP requests for the Mirroring process

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare variables for SOAP Types
C_BLOB(MirrorSOAP_oBLOB)
C_LONGINT(MirrorSOAP_LResult)
C_TEXT(MirrorSOAP_tAction)
C_TEXT(MirrorSOAP_tDatabaseName)
C_TEXT(MirrorSOAP_tLogFile)

 ` Declare local variables
C_LONGINT($LCompressed)
C_LONGINT($LErrorCode)
C_LONGINT($LPid)
C_LONGINT($LPosition)
C_TEXT($tDatabaseName)
C_TEXT($tLogFileBackupID)
C_TEXT($Mirror_tLastBackupID)
C_TEXT($Mirror_tBackupFolderPath)
C_TEXT($Mirror_tStructureFolderPath)
C_TEXT($Mirror_tNumberBackupsValue)

SOAP DECLARATION(MirrorSOAP_tDatabaseName;Is Text ;SOAP Input ;"MirrorSOAP_tDatabaseName")
SOAP DECLARATION(MirrorSOAP_tAction;Is Text ;SOAP Input ;"MirrorSOAP_tAction")
SOAP DECLARATION(MirrorSOAP_oBLOB;Is BLOB ;SOAP Input ;"MirrorSOAP_oBLOB")
SOAP DECLARATION(MirrorSOAP_tLogFile;Is Text ;SOAP Input ;"MirrorSOAP_tLogFile")
SOAP DECLARATION(MirrorSOAP_LResult;Is LongInt ;SOAP Output ;"MirrorSOAP_LResult")

READ ONLY(*) ` Set tables to read only for now

$LErrorCode:=0
MirrorSOAP_LErrorNumber:=0

$tDatabaseName:=Structure file
$Mirror_tStructureFolderPath:=Mirror_tGetFolderPathnames ($tDatabaseName)
$tDatabaseName:=(Substring($tDatabaseName;Length($Mirror_tStructureFolderPath)+1))

This database uses several of the backup preference settings (set by using
4D’s built-in backup preferences. For example: you can specify where you
want the log file segment and backup files to be saved by specifying the
backup folder location. Note: I found it safer to simply use the backup file
location rather than risk getting the mirrors out of sync by using the log file
location which requires you to specify a log file

The method Mirror_HandleBackupPreferences loads the needed preferences.
It is a read only method and does not attempt to modify 4D’s backup
preferences.

The log file segment has an 8 digit number representing the backup number
and segment number. Since backups are not taking place on the main
machine and backups may be taking place on the mirror machine the names
of the file may not represent where they actually exist in regards to the
backup number on the mirror machine. Therefore, the code will change the
name of the file to represent the last backup number on the mirror machine
so that the segments can correspond to the appropriate backup.

If (MirrorSOAP_tDatabaseName=$tDatabaseName)
Mirror_HandleBackupPreferences ("Load";->$Mirror_tLastBackupID;->$Mirror_tNumberBackupsValue;-

>$Mirror_tBackupFolderPath)

If (($Mirror_tBackupFolderPath="") | ($Mirror_tBackupFolderPath="/") | ($Mirror_tBackupFolderPath=":"))
$Mirror_tBackupFolderPath:=$Mirror_tStructureFolderPath

End if

Case of
: (MirrorSOAP_tAction="VerifyPresent")

If (Test semaphore("$Mirror_BackupInProgress")) ` Check to see if a backup is in progress
$LErrorCode:=-17053

Else
MirrorSOAP_LResult:=1 ` The database is here

End if

: (MirrorSOAP_tAction="IntegrateLog@")
If (Test semaphore("$Mirror_BackupInProgress")) ` Check to see if a backup is in progress

$LErrorCode:=-17053
Else

READ WRITE(*) ` Set tables to read write for mirror integration
BLOB PROPERTIES(MirrorSOAP_oBLOB;$LCompressed)
If ($LCompressed#Is not compressed)

EXPAND BLOB(MirrorSOAP_oBLOB)
End if
$LPosition:=Position("[";MirrorSOAP_tLogFile)
$tLogFileBackupID:=Substring(MirrorSOAP_tLogFile;$LPosition+1;4)

$len:=Length(MirrorSOAP_tLogFile)
$LogFileID:=Num(Substring(MirrorSOAP_tLogFile;$len-8;4))

Case of
: ($tLogFileBackupID=$Mirror_tLastBackupID) ` Do nothing everything is OK
: (Num($tLogFileBackupID)<Num($Mirror_tLastBackupID))

 ` Backups are occurring on the mirror machine. The main database can not do backups.
 ` In order to avoid confusion the integrated log files need to have

`their names changed to represent the correct name
 ` in correspondence to the backup file names
 ` This will also assist later in the deletion of these files

`when the corresponding backup files are purged

MirrorSOAP_tLogFile:=Substring(MirrorSOAP_tLogFile;1;$LPosition)+$Mirror_tLastBackupID+Substring(
MirrorSOAP_tLogFile;$LPosition+5)

End case

ON ERR CALL("Mirror_HandleMirrorError")
BLOB TO DOCUMENT($Mirror_tBackupFolderPath+MirrorSOAP_tLogFile;MirrorSOAP_oBLOB)

If (False) `JYFH
 ` An integration can also be performed from the SOAP connection. However, if the log file
 ` is too big, the SOAP connection will time-out during integration
 ` This is why the integration is performed from a stored procedure
INTEGRATE LOG FILE($Mirror_tBackupFolderPath+MirrorSOAP_tLogFile)

Else
<>doneintegre:=False
$a:=New

process("Mirror_Integrate";256000;"Mirror_Integrate";$Mirror_tBackupFolderPath+MirrorSOAP_tLogFile)
If ($a=0)

$0:=-1
MirrorSOAP_LResult:=0

Else
MirrorSOAP_LResult:=2

End if
End if

ON ERR CALL("")
If (OK=1)

$LErrorCode:=0
Else

$LErrorCode:=MirrorSOAP_LErrorNumber
End if

<>Mirror_tLastLogNumber:=MirrorSOAP_tLogFile
Mirror_HandleMirrorPreferences ("Save")
If (MirrorSOAP_tAction="IntegrateLog&Backup")

 ` The backup needs to take place in it's own process so not to tie down the main server waiting
for a backup to complete

$LPid:=New process("Mirror_Backup";<>DefaultStackSize;"Mirror_Backup")
End if

End if
: (MirrorSOAP_tAction="Statusintegration")

MirrorSOAP_LResult:=2
$0:=0
For ($i;1;30)

If (Not(Test semaphore("integrationinprogress")))
MirrorSOAP_LResult:=1
$i:=31

Else
DELAY PROCESS(Current process;200)

End if
End for

End case

Else
$LErrorCode:=-17051

End if

 `MirrorSOAP_LResult:=$LErrorCode
If ($LErrorCode#0)

Mirror_SOAP_ErrorHandling ($LErrorCode)
End if
 `End of method

If an error occurred during integration or another error transpired, the error
is interpreted into a error number and message and a SOAP fault is returned
to the main database in the method Mirror_SOAP_ErrorHandling. Error
numbers in the 1403 to 1420 range are 4D Backup error messages. Error
numbers from -17050 to -17054 are error number assigned in this code.
Please refer to the example database to examine all the errors and their
messages

Performing backups on the main server
--

In a word DON’T. If you do the mirror will be broken and you will need to
start over. The code in the example database will warn you if you are about
to break the mirror. The only time you should break the mirror is if you are
creating a new mirror. Then you need to break the old one to create a new
one.

Performing backups on the mirroring server
--

One of the biggest improvements in the 2004.4 backup scheme is to allow
backups on the mirroring server without breaking the mirroring
synchronization. This provides for a variety of enhanced security measures
including backing up the backups for removal to a safe storage place, all
without having to shut down anything.

But like every other new feature you need to be careful how you use it. Lets
face it, for very large databases, backup takes a while. You don’t want to be
sending files to the mirroring server while a backup is in progress. It simply
will not get integrated. Fortunately, using a simple semaphore when backup
begins and clearing it when it ends can also be used to notify the main server
not to send a log file right now. Error -17053 from page 39 above. This is
one of the main reasons that I recommend controlling the backups from the
main database rather than the backup scheduler on the mirroring machine.

The Mirror_OnBackupStartup method should be called from the database
method On Backup Startup.

If (False)
 ` Databse Method: Mirror_OnBackupStartup
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur

 ` Date: 5/18/06

 ` Purpose: Alerts the user that if they continue on the main machine the mirror will be broken and
returns an error code

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare parameters
C_LONGINT($0) ` Abort process if necessary

 ` Declare local variables
C_LONGINT($LProcessID)
C_LONGINT($LErrorCode)

$0:=0 ` Default allow backup to continue

Case of
 : (Undefined(<>Mirror_tServerType)) ` This can occur on launching a database with an unmatched log

and backup.
 `Forcing a backup to occur before any code is run, therefore there is no defined variable in

interprted mode

 : (<>Mirror_tServerType="Mirror") ` OK to continue the Mirror machine is allowed to backup the
datafile.

 If (Semaphore("$Mirror_BackupInProgress")) ` Set the semaphore
 $0:=-17053
 End if

 : (Length(<>Mirror_tServerType)>0) ` This database is part of a mirror
 CONFIRM("This database is part of a mirror. Continuing the backup will break the Mirror!";

"Abort Backup";"Break the Mirror")
 If (OK=1)
 $0:=-17052
 End if

End case
 `End of method

Second, although 4D Backup will delete old backup files and the log files
created by the backup, it will not delete the log segment files, it simply
doesn’t know about them. That is why I painstakingly rename them in the
mirroring machines. So that I can delete them when the backup is finished
and they are no longer needed because even a restore can’t use them if the
oldest backup available is newer than the log segments.

The Mirror_OnBackupShutdownmethod should be called from the database
method On Backup Shutdown.

If (False)
 ` Method: Mirror_OnBackupShutdown
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/18/06

 ` Purpose: Handles deleting the log files that have been integrated need to be purged

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare local variables
C_LONGINT($i)
C_LONGINT($Mirror_LOldLogID)
C_LONGINT($Mirror_LThisLogID)
C_LONGINT($LPosition)
C_TEXT($Mirror_tLastBackupFolderPath)
C_TEXT($Mirror_tLastBackupID)
C_TEXT($Mirror_tLogFilePrefix)
C_TEXT($Mirror_tNumberBackupsValue)

Case of
 : (<>Mirror_tServerType="Mirror")
 CLEAR SEMAPHORE("$Mirror_BackupInProgress")

 ` On the mirror machine integrated log files may be piling up and need to be deleted
 $Mirror_tLastBackupID:=""
 $Mirror_tNumberBackupsValue:=""
 $Mirror_tLastBackupFolderPath:=""
 Mirror_HandleBackupPreferences ("Load";->$Mirror_tLastBackupID;

->$Mirror_tNumberBackupsValue;->$Mirror_tLastBackupFolderPath)

 If (Num($Mirror_tLastBackupID)>Num($Mirror_tNumberBackupsValue))
 $Mirror_LOldLogID:=Num($Mirror_tLastBackupID)-Num($Mirror_tNumberBackupsValue)
 ARRAY TEXT($atDocuments;0)

 DOCUMENT LIST($Mirror_tLastBackupFolderPath;$atDocuments) ` Get the possible files

 $LPosition:=Position("[";<>Mirror_tLastLogNumber)
 $Mirror_tLogFilePrefix:=Substring(<>Mirror_tLastLogNumber;1;$LPosition)

 For ($i;1;Size of array($atDocuments))

 If ((Position($Mirror_tLogFilePrefix;$atDocuments{$i})>0) &
(Position(".4DL";$atDocuments{$i})>0)) `

 Is this a log file segment for this database?
 $LPosition:=Position("[";$atDocuments{$i})
 $Mirror_LThisLogID:=Num(Substring($atDocuments{$i};$LPosition+1;4))
 If ($Mirror_LThisLogID<=$Mirror_LOldLogID) ` This is an old log file that should be

deleted
 DELETE DOCUMENT($Mirror_tLastBackupFolderPath+$atDocuments{$i})
 End if
 End if
 End for

 End if

End case
 `End of method

Keeping users out of the mirrored database
--

Both the main server and the mirrored server are online. It is quite possible
that a user might accidentally log into the mirrored server. There are a
couple of things that you can do to prevent this from happening.

If you are using a built application, you will need to be sure that you reassign
the database publication name for the mirroring server(s). Otherwise the
built application client could easily mistake the mirroring server for the real
server on the network. However, this could make recovering from a disaster
harder, unless you keep a copy of the built server structure for the real
operational server on the mirroring machine as well, so that you don’t have
to rebuild the database to change the Publication name.

However, a simpler solution is to deny access to the mirror machine in code.
Each connection to a server must go through one of two database methods
to gain access to the database. On Server Open Connection and On Web
Authenticaion. Use a simple test in each of these methods to see if this is the
mirroring machine and deny access if it is.

If (False)
 ` Database Method: On Server Open Connection
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/23/2006

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

C_LONGINT($0)
$0:=Mirror_OnServerOpenConnection
 `End of method

If (False)
 ` Method: Mirror_OnServerOpenConnection
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date:5/23/2006

 ` Purpose: Doesn't allow connections into the 'Mirror' database

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare parameters
C_LONGINT($0)

$0:=0 ` Default everything OK
If (<>Mirror_tServerType="Mirror")
 $0:=-17001 ` Don't allow connections to the mirrored server. Data might get accidentally changed
End if
 `End of method

The only thing I don’t like about this solution is the error message on the
client machine. Because it is 4D rejecting the connection at its lowest level
and you can’t modify 4D to understand your own error messages at this
level. 4D Client interprets any error here as not enough client licenses.

The On Web Authentication is slightly more complex because as we are using
SOAP we must allow through all calls to our method for log integration while
rejecting everything else.

If (False)
 ` Database Method: On Web Authentication
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/23/2006

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

C_BOOLEAN($0)
$0:=Mirror_OnWebAuthentication
 `End of method

If (False)
 ` Method: Mirror_OnWebAuthentication
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/23/06

 ` Purpose: Rejects invalid web connections

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare parameters
C_BOOLEAN($0)

Case of
 : (Not(Is SOAP request))
 $0:=False
 : (Get SOAP info(SOAP Method Name)#"Mirror_SOAP_HandleEvents")
 $0:=False
 Else
 $0:=True
End case

This has proven to work reliably. Although you might choose to intercept a
Web connection differently and send a more user friendly error web page.

What to do about those pesky transactions
--

Earlier we talked about transactions and how to set up the preferences to
determine how long to wait for existing transactions to finish etc. Now lets
look at code on either the Client side or server side in stored procedures, etc.
First of all, never use Automatic transactions for anything in a mirrored
server. Next, before you start a transaction look to see if a New log file
command is in progress. If you remember we wrappered the creating of a
new log file segment with a semaphore.

Anyplace you use the command START TRANSACTION you whould wrapper
that code with a check for the semaphore. Her is an example of the form
method for Customers. (OK, so a transaction really isn’t needed in
Customers, it’s just an example database.)

If (False)
 ` Form Method: [Customers];"Input"
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/23/2006

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

C_LONGINT($LFormEvent)
$LFormEvent:=Form event

Case of
 : ($LFormEvent=On Load)
 While (Test semaphore("MirroringInProgress")) ` This is to hold starting transactions while the new

log file is being created
 MESSAGE("Mirroring In Progress. Please Wait.")
 Mirror_MyDelay (Current process;60) ` Wait one second before trying again
 End while
 START TRANSACTION

 : ($LFormEvent=On Validate)
 VALIDATE TRANSACTION

 : ($LFormEvent=On Unload)
 If (In transaction)
 CANCEL TRANSACTION
 End if

End case

This example is crude and I’m sure you will want something more
sophisticated but you get the idea.

Recovering from a disaster - small
--

The mirroring system is designed for quick recovery from small disasters. For
many, my definition of small would be a major disaster. By small disaster I
mean that the main server becomes inoperative. All data is lost. Recovery is
possible but will take hours to restore from the backups.

If you can access the hard drive for the main server and retrieve the last
open log file that has not yet been integrated into the database, recovery is
easy. The last log file needs to be integrated into the mirrored database.
Below are the specific steps for the example database. Anything you create
will need to include at least some of these steps.

1) Simply move the Log file to a 4D Client machine in a folder by itself.
This is necessary because the last log file will need to be
merged into the mirrored machine before it can be set up as
the main server. The command INTEGRATE LOG FILE can
only occur on the Server. Therefore, the 4D Client machine
will temporarily tack the place of the crashed main 4D Server
and send the last file to the mirrored server for integration.

2) Launch the 4D Client and log into the mirrored database.
Depending on the security measures chosen above it may be
necessary to change the port number of either the server or
the 4D Client.

3) Go to the user environment and execute the method
E_RestoreDataFromMirrorLogs.

We will review this code in the next section.

4) Select the log file to be merged.

5) Go to the server and change the port number if still necessary.

6) Shut down the mirrored server.

7) Trash the mirror prefferences.

8) Launch the server and select the server to be the main database.
You are back in business.

If you can’t recover the last open log file you will have to do without that
data. If this is the case you can skip steps 1 through 4 above and proceed
with step 5.

Recovering from a disaster - major
--

The worst possible scenario is that both the main server and the mirrored
server data files are both damaged. In this case if you are doing periodic

backups on the mirroring machine you can use the most recent backup,
otherwise, you must go back to the original backup and begin from there.
(Hope you didn’t throw away any of those log file segments because the
drive got full.) In any even, the backups do not contain any of the log file
segments created since the backup was created. It doesn’t matter which
database is used. Follow the steps below to recover from the major disaster.

1) Restore the database from your chosen backup. (original or hopefully
more recent)

2) Move all the Log files created after the backup you are using to a 4D
Client machine in a folder by themselves.

3) Launch the 4D Client and log into the server.
4) Go to the user environment and execute the method

E_RestoreDataFromMirrorLogs.
5) Select one of the log files to be merged.
6) After merging, do a backup and begin everything again as you set up

the mirror in the first place. You are back in business.

Note: It might be necessary to separately merge the final log file as you did
in the steps above in the recovery from a minor disaster minor. As the code
does not distinguish between active and closed log segments in the same
pass.

If (False)
 ` Method: Mirror_E_RestoreDataFromLogs
 ` 4D Technote on Mirroring a 2004.4 database
 ` Created by: Kent Wilbur
 ` Date: 5/23/2006

 ` Purpose: Integrates log files into a database restored from a backup
 ` Not the mirror

 <>Mirror_f_Version2004x4:=True
 <>Mirror_fK_Wilbur:=True

End if

 ` Declare local variables
ARRAY TEXT($atDocuments;0)
ARRAY TEXT($atLogFiles;0)
C_BLOB($Mirror_oLogFile)
C_LONGINT($i)
C_LONGINT($LApplicationType)
C_LONGINT($LError)
C_LONGINT($LPid)
C_LONGINT($LPosition)
C_TEXT($tDatabaseName)
C_TEXT($tDatabasePath)
C_TEXT($tFileName)
C_TEXT($tFolderPath)
C_TIME($hDocRef)

$LApplicationType:=Application type

Case of
 : ($LApplicationType=4D Client)

 ALERT("Please locate a log file to be integrated.")

 $hDocRef:=Open document("";"";Get Pathname) ` show all files, but if a log file is not chosen
this will not work

 If (OK=1)
 CLOSE DOCUMENT($hDocRef)
 $tFolderPath:=Mirror_tGetFolderPathnames (Document)
 $tFileName:=Substring(Document;Length($tFolderPath)+1) ` Get the name of the log file

 chosen

 ` Get necessary information from the server
 MirrorSOAP_tDatabaseName:=""
 Mirror_tThisServerIPAddress:=""

Even though we are running on a 4D Client machine of the server it is easier
to integrate the log file using the same SOAP methods used by the main
Server. The integration code (SOAP) needs both the name of the database
and IP address of the “mirrored” server. This data is NOT in the mirror
preference settings. So we will use some inter-process communication
between the Client and the Server and as the Server to look up the data for
themselves. The code above reads the values using GET PROCESS
VARIABLE.

 $LPid:=Execute on server("Mirror_E_RestoreDataFromLogs";32000)
 Repeat
 Mirror_MyDelay (Current process;2) ` Wait for the server to get the information
 GET PROCESS VARIABLE($LPid;MirrorSOAP_tDatabaseName;

MirrorSOAP_tDatabaseName)
 GET PROCESS VARIABLE($LPid;Mirror_tThisServerIPAddress;

Mirror_tThisServerIPAddress)
 Until (Length(MirrorSOAP_tDatabaseName)>0)

Log segements have a specific format [0000-0000]. If we are merging
multiple segments we will look for that format and merge all files that match
this pattern in their file name and have the correct main backup number.

 $LPosition:=Position("[";$tFileName)
 If ($LPosition+10=Position("]";$tFileName)) ` Make sure we are getting mirror log files for

merging not regular log files
 ` Now we need to find all corresponding log files
 DOCUMENT LIST($tFolderPath;$atDocuments)

 For ($i;1;Size of array($atDocuments))

 Case of
 : (Length($tFileName)#Length($atDocuments{$i})) ` Not the same length,

not a log file
 : (Substring($tFileName;1;$LPosition+5)#Substring($atDocuments{$i};

1;$LPosition+5)) ` Not the same Datafile and backup number
 : (Substring($tFileName;$LPosition+10)#Substring($atDocuments{$i};

$LPosition+10)) ` Not a log file
 Else
 APPEND TO ARRAY($atLogFiles;$atDocuments{$i})
 End case
 End for

 If (Size of array($atLogFiles)>0) ` Integrate the log files
 SORT ARRAY($atLogFiles)

 For ($i;1;Size of array($atLogFiles))

 DOCUMENT TO BLOB($tFolderPath+$atLogFiles{$i};$Mirror_oLogFile)
 If (BLOB size($Mirror_oLogFile)<10000) ` If larger than10000 bytes

compress the blob to reduce network bandwidth usage
 COMPRESS BLOB($Mirror_oLogFile)
 End if
 $LError:=Mirror_proxy_SOAP_LHandleEvents (MirrorSOAP_tDatabaseName;

"IntegrateLog";Mirror_tThisServerIPAddress;->$Mirror_oLogFile;
$atLogFiles{$i}) ` Send the log file to the server

 If ($LError#0)
 ALERT("Big Problem!")
 $i:=Size of array($atLogFiles)
 End if
 SET BLOB SIZE($Mirror_oLogFile;0) ` Clean up memory

 End for
 End if

Merging a single log file without the closed log format of [0000-0000] is
handled here.

 Else ` Merging single log file
 DOCUMENT TO BLOB($tFolderPath+$tFileName;$Mirror_oLogFile)
 If (BLOB size($Mirror_oLogFile)<10000) ` If larger than10000 bytes compress the blob

to reduce network bandwidth usage
 COMPRESS BLOB($Mirror_oLogFile)
 End if
 $LError:=Mirror_proxy_SOAP_LHandleEvents (MirrorSOAP_tDatabaseName;

"IntegrateLog";Mirror_tThisServerIPAddress;->$Mirror_oLogFile;$tFileName)
 ` Send the log file to the server

 If ($LError#0)
 ALERT("Log file not merged!")
 End if
 SET BLOB SIZE($Mirror_oLogFile;0) ` Clean up memory

 End if
 End if

This is where the 4D Server looks up the information about itself and saves
the information into some process variables. Once save the process delays
for a few seconds then dies. During those few seconds the code above reads
the contents of the process variables.

 : ($LApplicationType=4D Server)
 MirrorSOAP_tDatabaseName:=""
 $LError:=IT_MyTCPAddr (Mirror_tThisServerIPAddress;$tFileName)
 $tDatabaseName:=Structure file
 $tDatabasePath:=Mirror_tGetFolderPathnames ($tDatabaseName)
 MirrorSOAP_tDatabaseName:=(Substring($tDatabaseName;Length($tDatabasePath)+1))
 Mirror_MyDelay (Current process;300) ` Leave process alive long enough to get variable values

to the client

 Else
 ALERT("Log files can only be integrated from a 4D Client machine.")
End case
 ` End of method ` Date: 11/1/2005

Summary
--

Creating a mirrored system is no longer a database administrator task. It
requires implementation by the developer. However, it isn’t a difficult task to
complete. Administrators of a 4D Database often had trouble establishing a
mirror, so the developer was usually involved anyway.

The new mirroring commands make the task more flexible that in previous
versions of 4D. And a user friendly interface can easily be created to
administer the task.

Although mirroring is possible with 2004.2, I would recommend that you use
at least 2004.4 which fixed several minor bugs and added some new features
to get around some built-in limitations.

Most 4D databases don’t need mirroring. But for those that do, take a look at
the component include with this database. It might be just what you need.

